891 resultados para Angiotensin II Type 1 Receptor Blockers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proliferation signal inhibitors (PSIs) sirolimus (SRL) and everolimus (ERL) often induce proteinuria due to glomerular but also tubular dysfunction in transplant patients. The beneficial effect of angiotensin converting enzyme inhibitors (ACE-I) and angiotensin II (Ang II) type 1 receptor blockers (ARB) has been reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth-restricted fetuses are at risk for a variety of lifelong medical conditions. Preeclampsia, a life-threatening hypertensive disorder of pregnancy, is associated with fetuses who suffer from intrauterine growth restriction (IUGR). Recently, emerging evidence indicates that preeclamptic women harbor AT(1) receptor agonistic autoantibodies (AT(1)-AAs) that contribute to the disease features. However, the exact role of AT(1)-AAs in IUGR and the underlying mechanisms have not been identified. We report that these autoantibodies are present in the cord blood of women with preeclampsia and retain the ability to activate AT(1) receptors. Using an autoantibody-induced animal model of preeclampsia, we show that AT(1)-AAs cross the mouse placenta, enter fetal circulation, and lead to small fetuses with organ growth retardation. AT(1)-AAs also induce apoptosis in the placentas of pregnant mice, human villous explants, and human trophoblast cells. Finally, autoantibody-induced IUGR and placental apoptosis are diminished by either losartan or an autoantibody-neutralizing peptide. Thus, these studies identify AT(1)-AA as a novel causative factor of preeclampsia-associated IUGR and offer two possible underlying mechanisms: a direct detrimental effect on fetal development by crossing the placenta and entering fetal circulation, and indirectly through AT(1)-AA-induced placental damage. Our findings highlight AT(1)-AAs as important therapeutic targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin-angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective ATI receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P) H oxidase-mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT(1)-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The renin-angiotensin system plays a crucial role in the development and establishment of the hypertensive state in the spontaneously hypertensive (SH) rat. Interruption of this system's activity by pharmacological means results in the lowering of blood pressure (BP) and control of hypertension. However, such means are temporary and require the continuous use of drugs for the control of this pathophysiological state. Our objective in this investigation was to determine if a virally mediated gene-transfer approach using angiotensin type 1 receptor antisense (AT1R-AS) could be used to control hypertension on a long-term basis in the SH rat model of human essential hypertension. Injection of viral particles containing AT1R-AS (LNSV-AT1R-AS) in 5-day-old rats resulted in a lowering of BP exclusively in the SH rat and not in the Wistar Kyoto normotensive control. A maximal anti-hypertensive response of 33 +/- 5 mmHg was observed, was maintained throughout development, and still persisted 3 months after administration of LNSV-AT1R-AS. The lowering of BP was associated with the expression of AT1R-AS transcript and decreases in AT1-receptor in many peripheral angiotensin II target tissues such as mesenteric artery, adrenal gland, heart, and kidney. Attenuation of angiotensin II-stimulated physiological actions such as contraction of aortic rings and increase in BP was also observed in the LNSV-AT1R-AS-treated SH rat. These observations show that a single injection of LNSV-AT1R-AS normalizes BP in the SH rat on a long-term basis. They suggest that such a gene-transfer strategy can be successfully used to control the development of hypertension on a permanent basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The type 1 angiotensin II (AT1) receptor is well characterized but the type 2 (AT2) receptor remains an enigma. We tested the hypothesis that the AT2 receptor can modulate the growth of vascular smooth muscle cells by transfecting an AT2 receptor expression vector into the balloon-injured rat carotid artery and observed that overexpression of the AT2 receptor attenuated neointimal formation. In cultured smooth muscle cells, AT2 receptor transfection reduced proliferation and inhibited mitogen-activated protein kinase activity. Furthermore, we demonstrated that the AT2 receptor mediated the developmentally regulated decrease in aortic DNA synthesis at the latter stages of gestation. These results suggest that the AT2 receptor exerts an antiproliferative effect, counteracting the growth action of AT1 receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maternal endothelial dysfunction in preeclampsia is associated with increased soluble fms-like tyrosine kinase-1 (sFlt-1), a circulating antagonist of vascular endothelial growth factor and placental growth factor. Angiotensin II (Ang II) is a potent vasoconstrictor that increases concomitant with sFlt-1 during pregnancy. Therefore, we speculated that Ang II may promote the expression of sFlt-1 in pregnancy. Here we report that infusion of Ang II significantly increases circulating levels of sFlt-1 in pregnant mice, thereby demonstrating that Ang II is a regulator of sFlt-1 secretion in vivo. Furthermore, Ang II stimulated sFlt-1 production in a dose- and time-dependent manner from human villous explants and cultured trophoblasts but not from endothelial cells, suggesting that trophoblasts are the primary source of sFlt-1 during pregnancy. As expected, Ang II-induced sFlt-1 secretion resulted in the inhibition of endothelial cell migration and in vitro tube formation. In vitro and in vivo studies with losartan, small interfering RNA specific for calcineurin and FK506 demonstrated that Ang II-mediated sFlt-1 release was via Ang II type 1 receptor activation and calcineurin signaling, respectively. These findings reveal a previously unrecognized regulatory role for Ang II on sFlt-1 expression in murine and human pregnancy and suggest that elevated sFlt-1 levels in preeclampsia may be caused by a dysregulation of the local renin/angiotensin system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined the effects of AT 1 and AT 2 (selective no peptides antagonists angiotensin receptors), arginine vasopressin V 1 receptor antagonist as well as L-arginine, a nitric oxide donor and N W-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, injected into supraoptic nucleus (SON) on water and sodium intake induced by the injection of angiotensin II (ANGII). Male Holtzman rats weighing 200-250 g with canulae implanted into the SON were used. The drugs were injected in 0.5 μL over 30-60 sec. The water intake after injection of saline SAL+SAL 0.15 M NaCl was 0.40±0.1 mL 2 h -1; SAL+ANGII increase water intake. Losartan decreased the water intake induced by ANGII. PD123319 injected prior to produce no change in water intake induced by ANGII. AVPA prior to ANGII reduced the water intake with a less intensity than losartan. L-arginine prior to ANGII decreases the water intake at a same intensity than losartan. L-NAME prior to ANGII potentiated the dipsogenic effect of ANGII. Losartan injected simultaneously with L-arginine prior to ANGII blocked the dipsogenic effect of ANGII. These results confirm the importance of SON in the control of water intake and strongly suggest that AT 1, V 1 receptors interact with nitrergic pathways within the SON influencing the dipsogenic effect of ANGII.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium channel blockers (CCBs) are prescribed to patients with Marfan syndrome for prophylaxis against aortic aneurysm progression, despite limited evidence for their efficacy and safety in the disorder. Unexpectedly, Marfan mice treated with CCBs show accelerated aneurysm expansion, rupture, and premature lethality. This effect is both extracellular signal-regulated kinase (ERK1/2) dependent and angiotensin-II type 1 receptor (AT1R) dependent. We have identified protein kinase C beta (PKCβ) as a critical mediator of this pathway and demonstrate that the PKCβ inhibitor enzastaurin, and the clinically available anti-hypertensive agent hydralazine, both normalize aortic growth in Marfan mice, in association with reduced PKCβ and ERK1/2 activation. Furthermore, patients with Marfan syndrome and other forms of inherited thoracic aortic aneurysm taking CCBs display increased risk of aortic dissection and need for aortic surgery, compared to patients on other antihypertensive agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurogenesis occurs in two distinct regions of the adult brain; the subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the subventricular zone (SVZ) lining the lateral ventricles. It is now well-known that adult hippocampal neurogenesis can be modulated by a number of intrinsic and extrinsic factors e.g. local signalling molecules, exercise, environmental enrichment and learning. Moreover, levels of adult hippocampal neurogenesis decrease with age, at least in rodents, and alterations in hippocampal neurogenesis have been reported in animal models and human studies of neuropsychiatric and neurodegenerative conditions. Neuroinflammation is a common pathological feature of these conditions and is also a potent modulator of adult hippocampal neurogenesis. Recently, the orphan nuclear receptor TLX has been identified as an important regulator of adult hippocampal neurogenesis as its expression is necessary to maintain the neural precursor cell (NPC) pool in the adult DG. Likewise, exposure of animals to voluntary exercise has been consistently demonstrated to promote adult hippocampal neurogenesis. Lentivirus (LV)- mediated gene transfer is a useful tool to elucidate gene function and to explore potential therapeutic candidates across an array of conditions as it facilitates sustained gene expression in both dividing and post-mitotic cell populations. Both intrinsic and extrinsic factors are important regulators of adult hippocampal neurogenesis. Examining how these factors are affected by an inflammatory stimulus, and the subsequent effects on adult hippocampal neurogenesis provides important information for the development of novel treatment strategies for neuropsychiatric and neurodegenerative conditions in which adult hippocampal neurogenesis is impaired. The aims of the series of experiments presented in this thesis were to examine the effect of the pro-inflammatory cytokine interleukin-1β (IL-1β) on adult hippocampal NPCs both in vitro and in vivo. In vitro, we have shown that IL-1β reduces proliferation of adult hippocampal NPCs in a dose and time-dependent manner. In addition, we have demonstrated that TLX expression is reduced by IL-1β. Blockade of IL-1β signalling prevented both the IL-1β-induced reduction in cell proliferation and TLX expression. In vivo, we examined the effect of short term and long term exposure to LV-IL-1β in sedentary mice and in mice exposed to voluntary running. We demonstrated that impaired hippocampal neurogenesis is only evident after long term exposure to IL-1β. In mice exposed to voluntary running, hippocampal neurogenesis is significantly increased following short-term but not long-term exposure to running. Moreover, short-term running effectively prevents any IL-1β-induced effects on hippocampal neurogenesis; however, no such effects are seen following long-term exposure to running.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perturbations in endocrine functions can impact normal growth. Endocrine traits were studied in three dwarf calves exhibiting retarded but proportionate growth and four phenotypically normal half-siblings, sired by the same bull, and four unrelated control calves. Plasma 3,5,3'-triiodothyronine and thyroxine concentrations in dwarfs and half-siblings were in the physiological range and responded normally to injected thyroid-releasing hormone. Plasma glucagon concentrations were different (dwarfs, controls>half-siblings; P<0.05). Plasma growth hormone (GH), insulin-like growth factor-1 (IGF-1) and insulin concentrations in the three groups during an 8-h period were similar, but integrated GH concentrations (areas under concentration curves) were different (dwarfs>controls, P<0.02; half-siblings>controls, P=0.08). Responses of GH to xylazine and to a GH-releasing-factor analogue were similar in dwarfs and half-siblings. Relative gene expression of IGF-1, IGF-2, GH receptor (GHR), insulin receptor, IGF-1 type-1 and -2 receptors (IGF-1R, IGF-2R), and IGF binding proteins were measured in liver and anconeus muscle. GHR mRNA levels were different in liver (dwarfs1R mRNA abundance in liver in half-siblings and controls was 2.4- and 2.5-fold higher (P=0.003 and P=0.001, respectively) and in muscle tissue was 2.3- and 1.8-fold higher (P=0.01 and P=0.08, respectively) than in dwarfs. Hepatic IGF-1R protein levels (Western blots) in muscle were 2.5-fold higher (P<0.05) and in liver and muscle (quantitative immunohistochemistry) were higher (P<0.02 and P<0.07, respectively) in half-siblings than in dwarfs. The reduced presence of IGF-1R may have been the underlying cause of dwarfism in studied calves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Essential hypertension affects 25% of the US adult population and is a leading contributor to morbidity and mortality. Because BP is a multifactorial phenotype that resists simple genetic analysis, intermediate phenotypes within the complex network of BP regulatory systems may be more accessible to genetic dissection. The Renin-Angiotensin System (RAS) is known to influence intermediate and long-term blood pressure regulation through alterations in vascular tone and renal sodium and fluid resorption. This dissertation examines associations between renin (REN), angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and angiotensin II type 1 receptor (AT1) gene variation and interindividual differences in plasma hormone levels, renal hemodynamics, and BP homeostasis.^ Methods. A total of 150 unrelated men and 150 unrelated women, between 20.0 and 49.9 years of age and free of acute or chronic illness except for a history of hypertension (11 men and 7 women, all off medications), were studied after one week on a controlled sodium diet. RAS plasma hormone levels, renal hemodynamics and BP were determined prior to and during angiotensin II (Ang II) infusion. Individuals were genotyped by PCR for a variable number tandem repeat (VNTR) polymorphism in REN, and for the following restriction fragment length polymorphisms (RFLP): AGT M235T, ACE I/D, and AT1 A1166C. Associations between clinical measurements and allelic variation were examined using multiple linear regression statistical models.^ Results. Women homozygous for the AT1 1166C allele demonstrated higher intracellular levels of sodium (p = 0.044). Men homozygous for the AGT T235 allele demonstrated a blunted decrement in renal plasma flow in response to Ang II infusion (p = 0.0002). There were no significant associations between RAS gene variation and interindividual variation in RAS plasma hormone levels or BP.^ Conclusions. Rather than identifying new BP controlling genes or alleles, the study paradigm employed in this thesis (i.e., measured genes, controlled environments and interventions) may provide mechanistic insight into how candidate genes affect BP homeostasis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac hypertrophy is associated with altered expression of the components of the cardiac renin-angiotensin system (RAS). While in vitro data suggest that local mechanical stimuli serve as important regulatory modulators of cardiac RAS activity, no in vivo studies have so far corroborated these observations. The aims of this study were to (i) examine the respective influence of local, mechanical versus systemic, soluble factors on the modulation of cardiac RAS gene expression in vivo; (ii) measure gene expression of all known components of the RAS simultaneously; and (iii) establish sequence information and an assay system for the RAS of the dog, one of the most important model organisms in cardiovascular research. We therefore examined a canine model of right ventricular hypertrophy and failure (RVHF) in which the right ventricle (RV) is hemodynamically loaded, the left ventricle (LV) is hemodynamically unloaded, while both are exposed to the same circulating milieu of soluble factors. Using specific competitive PCR assays, we found that RVHF was associated with significant increases in RV mRNA levels of angiotensin converting enzyme and angiotensin II type 2 receptor, and with significant decreases of RV expression of chymase and the angiotensin II type 1 receptor, while RV angiotensinogen and renin remained unchanged. All components remained unchanged in the LV. We conclude that (i) dissociated regional regulation of RAS components in RV and LV indicates modulation by local, mechanical, not soluble, systemic stimuli; (ii) components of the cardiac RAS are independently and differentially regulated; and (iii) opposite changes in the expression of angiotensin converting enzyme and chymase, and of angiotensin II type I and angiotensin II type 2 receptors, may indicate different physiological roles of these RAS components in RVHF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’insuffisance cardiaque (IC) est associée à un taux de mortalité et d’hospitalisations élevé causant un fardeau économique important. Les deux causes majeures de décès de l’IC sont les arythmies ventriculaires létales et les sidérations myocardiques. Il est maintenant reconnu que l’angiotensine II (ANGII) est l'un des principaux médiateurs de l’IC. Ses effets délétères découlent de l’activation du récepteur de type 1 de l’ANGII (AT1) et entraînent le développement d’hypertrophie. Toutefois, son rôle dans la genèse d’arythmies demeure incompris. De ce fait, l'étude des mécanismes électriques et contractiles sous-jacents aux effets pathologiques de l’ANGII s’avère essentielle afin de mieux comprendre et soigner cette pathologie. Il est souvent perçu que les femmes sont protégées envers les maladies cardiovasculaires. Cependant, le nombre total de femmes décédant d’IC est plus grand que le nombre d’hommes. Également, l’impact des facteurs de risque diffère entre chaque sexe. Ces différences existent, mais les mécanismes sous-jacents sont encore peu connus. De plus, les femmes reçoivent fréquemment un diagnostic ou un traitement inapproprié en raison d’un manque d’information sur les différences entre les sexes dans la manifestation d’une pathologie. Ce manque de données peut découler du fait que les sujets de sexe féminin sont souvent sous-représentés dans les essais cliniques ou la recherche fondamentale ce qui a grandement limité l’avancement de nos connaissances sur ~50 % de la population. Ainsi, il semble plus que nécessaire d’approfondir notre compréhension des différences entre les sexes, notamment dans la progression de l’IC. L’utilisation d’un modèle de souris transgénique surexprimant le récepteur AT1 (souris AT1R) a permis d’étudier les changements électriques, structurels et contractiles avant et après le développement d’hypertrophie. Premièrement, chez les souris AT1R mâles, un ralentissement de la conduction ventriculaire a été observé indépendamment de l’hypertrophie. Ce résultat était expliqué par une réduction de la densité du courant Na+, mais pas de l’expression du canal. Ensuite, le rôle des protéines kinases C (PKC) dans la régulation du canal Na+ par l’ANGII a été exploré. Les évidences ont suggéré que la PKCα était responsable de la modulation de la diminution du courant Na+ chez les souris AT1R mâles et dans les cardiomyocytes humains dérivés de cellules souches induites pluripotentes (hiPSC-CM) en réponse à un traitement chronique à l’ANGII. Ensuite, les différences entre les sexes ont été comparées chez la souris AT1R. Une plus grande mortalité a été constatée chez les femelles AT1R suggérant qu’elles sont plus sensibles à la surexpression de AT1R. Le remodelage électrique ventriculaire a donc été comparé entre les souris AT1R des deux sexes. Les courants ioniques étaient altérés de façon similaire entre les sexes excluant ainsi leur implication dans la mortalité plus élevée chez les femelles. Ensuite, l’homéostasie calcique et la fonction cardiaque ont été étudiées. Il a été démontré que les femelles développaient une hypertrophie et une dilatation ventriculaire plus sévère que les mâles. De plus, les femelles AT1R avaient de petits transitoires calciques, une extrusion du Ca2+ plus lente ainsi qu’une augmentation de la fréquence des étincelles Ca2+ pouvant participer à des troubles contractiles et à la venue de post-dépolarisations précoces. En conclusion, l’ANGII est impliquée dans le remodelage électrique, structurel et calcique associé à l'émergence de l’IC. De surcroît, ces altérations affectent plus sévèrement les femelles soulignant la présence de différences entre les sexes dans le développement de l’IC.