982 resultados para Analytical methods validate
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The existence of organic and inorganic contaminants present in both fossil and biomass fuels and the fact that they can provide undesirable effects (environmental problems, corrosion processes, lead to storage instability, and others) implies a rigorous quality control of these fuels, although these contaminants make up a small part of the final fuel composition. Considering the rising importance of fuel ethanol in the worldwide panorama, this review aims at reporting the use of successful alternative analytical methods in the monitoring of organic and inorganic contaminants at trace levels, used to determine and to quantify these substances in fuel ethanol and also presenting all official norms for quality control of fuel ethanol employed by ABNT (Brazilian Association of Technical Norms), ASTM (American Society for Testing and Materials), and ECS (European Committee for Standardization).
Resumo:
Fluconazole, -(2.4-diflurofenil)--(1H-triazol-1-methyl)-1H-1,2,4-triazol-1-ethanol, is an antifungal of triazoles class. It shows activity against species of Candida sp., and it is indicated in cases of oropharyngeal candidiasis, esophageal, vaginal, and deep infection. Fluconazole is a selective inhibitor of ergosterol, a steroid exclusive of the cell membrane of fungal cells. Fluconazole is highly absorbed by the gastrointestinal tract, and it spreads easily by body fluids. The main adverse reactions related to the use of fluconazole are nausea, vomiting, headache, rash, abdominal pain, diarrhea, and alopecia in patients undergoing prolonged treatment with a dose of 400 mg/day. In the form of raw material, pharmaceutical formulations, or biological material, fluconazole can be determined by methods such as titration, spectrophotometry, and thin-layer, gas, and liquid chromatography. This article discusses the pharmacological and physical-chemical properties of fluconazole and also the methods of analysis applied to the determination of the drug.
Resumo:
Orbifloxacin is a third generation of fluoroquinolone that exhibits increased antibacterial activity against the Enterobacteriaceae, gram-negative and gram-positive bacteria, anaerobes, and mycobacteria. This drug was synthesized in 1987 and developed as a veterinary chemotherapeutic to use for livestock and domestic pets. Orbifloxacin is labeled for the treatment of skin, soft tissue, and urinary tract infections in dogs, and skin and soft tissue infections in cats, but in some countries, orbifloxacin has been given for the treatment of gastrointestinal and respiratory infections in cattle and swine and other animals. The in vitro activity and clinical efficacy of orbifloxacin against naturally occurring bacterial infections of the skin, ear, soft tissue, udder, and gastrointestinal and respiratory systems in different animals have been evaluated and good responses have been found. The minimum inhibitory concentration of orbifloxacin has been determined in various different pathogens and the results found in the literature are shown in this work. The pharmacokinetics of orbifloxacin has been evaluated by different routes of administration in goats, horses, pigs, rabbits, dogs, cats, camels, cattle, sheep, and fish. Orbifloxacin exhibits excellent pharmacokinetic parameters that suggest that this drug may have good clinical effects on various bacterial infections in these species. All methods described in the scientific literature for determination of orbifloxacin in different matrices were collected and discussed. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
A critical review of the properties of fusidic acid and the analytical methods for its determination
Resumo:
Fusidic acid, an antibiotic produced from the Fusidium coccineum fungus, belongs to the class of steroids, but has no corticosteroid effects. It is indicated for the treatment of infections caused by methicillin-resistant Staphylococcus aureus strains. The aim of this study was to search for the properties of fusidic acid published so far in the literature, as well as the methods developed for its determination in biological samples and pharmaceutical formulations. From the findings, we can conclude that fusidic acid has been used for decades and is indicated for the treatment of serious infections caused by Gram-positive microorganisms to this day. Furthermore, it is a hypoallergenic agent, has low toxicity, shows low resistance, and has no cross-resistance with other clinically used antibiotics. The analytical method of high-performance liquid chromatography has been widely used, since it can reduce the cost and time of analysis, making it more viable for routine quality control in the pharmaceutical industry.
Resumo:
What is it? Darunavir is a protease inhibitor used in the treatment of HIV infection. It is an important drug of therapy cocktail for patients infected with the virus. On the market there are darunavir ethanolate tablets of 75, 150, 300, 400, 600 and 800mg, because this is the most stable form. It is commercialized by Janssen-Cilag with the name PrezistaTM. Why we started? This drug has low water solubility and poor bioavailability, therefore requires administration in doses relatively high to the success of the therapeutic effect. The complexation of drugs by using cyclodextrin is welcome in this respect to improve the solubility and hence increase the dissolution rate of poorly soluble drugs. A monograph about this compound has not been described, thus it is an extremely important quality control of darunavir to demonstrate its effectiveness and safety. What we did? Some existing analytical techniques have been discussed in this manuscript, focusing on bioanalytical and pharmaceutical quality control applications. What we found? This review showed the published analytical methods reported for the determination of darunavir and discuss about its characteristics and complexation with cyclodextrin.
Resumo:
Antimicrobials have unquestionable importance in the control of many diseases; however the constant concern with evolution of resistant microorganisms is increasing. The ertapenem sodium is a β-lactam antibiotic of the carbapenem class, which it has a broader activity spectrum than most other β-lactam antimicrobials, and is more resistant to the enzyme β-lactamase, which is the main mechanism of resistance of many bacteria. The progress of microbial resistance to existing antibiotics is alarming. Thus we need to preserve antimicrobials that still have activity against these pathogens. In this context, the quality control has a key role to ensure the correct dosage, by contributing preventively to minimize the development of resistant microorganisms. Study of the physicochemical characteristics of the drug and the quantification of the content of active substance are of fundamental importance for the pharmaceutical industry to ensure the quality of the product sold. This work presents a literature survey of existing methods for ertapenem sodium quantification which was performed. Ertapenem sodium can be analyzed by many types of assays; however the HPLC is the most used method. This review will examine the published analytical methods reported for determination of ertapenem sodium, in biological fluids and formulations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
During recent years a consistent number of central nervous system (CNS) drugs have been approved and introduced on the market for the treatment of many psychiatric and neurological disorders, including psychosis, depression, Parkinson disease and epilepsy. Despite the great advancements obtained in the treatment of CNS diseases/disorders, partial response to therapy or treatment failure are frequent, at least in part due to poor compliance, but also genetic variability in the metabolism of psychotropic agents or polypharmacy, which may lead to sub-therapeutic or toxic plasma levels of the drugs, and finally inefficacy of the treatment or adverse/toxic effects. With the aim of improving the treatment, reducing toxic/side effects and patient hospitalisation, Therapeutic Drug Monitoring (TDM) is certainly useful, allowing for a personalisation of the therapy. Reliable analytical methods are required to determine the plasma levels of psychotropic drugs, which are often present at low concentrations (tens or hundreds of nanograms per millilitre). The present PhD Thesis has focused on the development of analytical methods for the determination of CNS drugs in biological fluids, including antidepressants (sertraline and duloxetine), antipsychotics (aripiprazole), antiepileptics (vigabatrin and topiramate) and antiparkinsons (pramipexole). Innovative methods based on liquid chromatography or capillary electrophoresis coupled to diode-array or laser-induced fluorescence detectors have been developed, together with the suitable sample pre-treatment for interference removal and fluorescent labelling in case of LIF detection. All methods have been validated according to official guidelines and applied to the analysis of real samples obtained from patients, resulting suitable for the TDM of psychotropic drugs.
Resumo:
Great strides have been made in the last few years in the pharmacological treatment of neuropsychiatric disorders, with the introduction into the therapy of several new and more efficient agents, which have improved the quality of life of many patients. Despite these advances, a large percentage of patients is still considered “non-responder” to the therapy, not drawing any benefits from it. Moreover, these patients have a peculiar therapeutic profile, due to the very frequent application of polypharmacy, attempting to obtain satisfactory remission of the multiple aspects of psychiatric syndromes. Therapy is heavily individualised and switching from one therapeutic agent to another is quite frequent. One of the main problems of this situation is the possibility of unwanted or unexpected pharmacological interactions, which can occur both during polypharmacy and during switching. Simultaneous administration of psychiatric drugs can easily lead to interactions if one of the administered compounds influences the metabolism of the others. Impaired CYP450 function due to inhibition of the enzyme is frequent. Other metabolic pathways, such as glucuronidation, can also be influenced. The Therapeutic Drug Monitoring (TDM) of psychotropic drugs is an important tool for treatment personalisation and optimisation. It deals with the determination of parent drugs and metabolites plasma levels, in order to monitor them over time and to compare these findings with clinical data. This allows establishing chemical-clinical correlations (such as those between administered dose and therapeutic and side effects), which are essential to obtain the maximum therapeutic efficacy, while minimising side and toxic effects. It is evident the importance of developing sensitive and selective analytical methods for the determination of the administered drugs and their main metabolites, in order to obtain reliable data that can correctly support clinical decisions. During the three years of Ph.D. program, some analytical methods based on HPLC have been developed, validated and successfully applied to the TDM of psychiatric patients undergoing treatment with drugs belonging to following classes: antipsychotics, antidepressants and anxiolytic-hypnotics. The biological matrices which have been processed were: blood, plasma, serum, saliva, urine, hair and rat brain. Among antipsychotics, both atypical and classical agents have been considered, such as haloperidol, chlorpromazine, clotiapine, loxapine, risperidone (and 9-hydroxyrisperidone), clozapine (as well as N-desmethylclozapine and clozapine N-oxide) and quetiapine. While the need for an accurate TDM of schizophrenic patients is being increasingly recognized by psychiatrists, only in the last few years the same attention is being paid to the TDM of depressed patients. This is leading to the acknowledgment that depression pharmacotherapy can greatly benefit from the accurate application of TDM. For this reason, the research activity has also been focused on first and second-generation antidepressant agents, like triciclic antidepressants, trazodone and m-chlorophenylpiperazine (m-cpp), paroxetine and its three main metabolites, venlafaxine and its active metabolite, and the most recent antidepressant introduced into the market, duloxetine. Among anxiolytics-hypnotics, benzodiazepines are very often involved in the pharmacotherapy of depression for the relief of anxious components; for this reason, it is useful to monitor these drugs, especially in cases of polypharmacy. The results obtained during these three years of Ph.D. program are reliable and the developed HPLC methods are suitable for the qualitative and quantitative determination of CNS drugs in biological fluids for TDM purposes.
Resumo:
The subject of this Ph.D. research thesis is the development and application of multiplexed analytical methods based on bioluminescent whole-cell biosensors. One of the main goals of analytical chemistry is multianalyte testing in which two or more analytes are measured simultaneously in a single assay. The advantages of multianalyte testing are work simplification, high throughput, and reduction in the overall cost per test. The availability of multiplexed portable analytical systems is of particular interest for on-field analysis of clinical, environmental or food samples as well as for the drug discovery process. To allow highly sensitive and selective analysis, these devices should combine biospecific molecular recognition with ultrasensitive detection systems. To address the current need for rapid, highly sensitive and inexpensive devices for obtaining more data from each sample,genetically engineered whole-cell biosensors as biospecific recognition element were combined with ultrasensitive bioluminescence detection techniques. Genetically engineered cell-based sensing systems were obtained by introducing into bacterial, yeast or mammalian cells a vector expressing a reporter protein whose expression is controlled by regulatory proteins and promoter sequences. The regulatory protein is able to recognize the presence of the analyte (e.g., compounds with hormone-like activity, heavy metals…) and to consequently activate the expression of the reporter protein that can be readily measured and directly related to the analyte bioavailable concentration in the sample. Bioluminescence represents the ideal detection principle for miniaturized analytical devices and multiplexed assays thanks to high detectability in small sample volumes allowing an accurate signal localization and quantification. In the first chapter of this dissertation is discussed the obtainment of improved bioluminescent proteins emitting at different wavelenghts, in term of increased thermostability, enhanced emission decay kinetic and spectral resolution. The second chapter is mainly focused on the use of these proteins in the development of whole-cell based assay with improved analytical performance. In particular since the main drawback of whole-cell biosensors is the high variability of their analyte specific response mainly caused by variations in cell viability due to aspecific effects of the sample’s matrix, an additional bioluminescent reporter has been introduced to correct the analytical response thus increasing the robustness of the bioassays. The feasibility of using a combination of two or more bioluminescent proteins for obtaining biosensors with internal signal correction or for the simultaneous detection of multiple analytes has been demonstrated by developing a dual reporter yeast based biosensor for androgenic activity measurement and a triple reporter mammalian cell-based biosensor for the simultaneous monitoring of two CYP450 enzymes activation, involved in cholesterol degradation, with the use of two spectrally resolved intracellular luciferases and a secreted luciferase as a control for cells viability. In the third chapter is presented the development of a portable multianalyte detection system. In order to develop a portable system that can be used also outside the laboratory environment even by non skilled personnel, cells have been immobilized into a new biocompatible and transparent polymeric matrix within a modified clear bottom black 384 -well microtiter plate to obtain a bioluminescent cell array. The cell array was placed in contact with a portable charge-coupled device (CCD) light sensor able to localize and quantify the luminescent signal produced by different bioluminescent whole-cell biosensors. This multiplexed biosensing platform containing whole-cell biosensors was successfully used to measure the overall toxicity of a given sample as well as to obtain dose response curves for heavy metals and to detect hormonal activity in clinical samples (PCT/IB2010/050625: “Portable device based on immobilized cells for the detection of analytes.” Michelini E, Roda A, Dolci LS, Mezzanotte L, Cevenini L , 2010). At the end of the dissertation some future development steps are also discussed in order to develop a point of care (POCT) device that combine portability, minimum sample pre-treatment and highly sensitive multiplexed assays in a short assay time. In this POCT perspective, field-flow fractionation (FFF) techniques, in particular gravitational variant (GrFFF) that exploit the earth gravitational field to structure the separation, have been investigated for cells fractionation, characterization and isolation. Thanks to the simplicity of its equipment, amenable to miniaturization, the GrFFF techniques appears to be particularly suited for its implementation in POCT devices and may be used as pre-analytical integrated module to be applied directly to drive target analytes of raw samples to the modules where biospecifc recognition reactions based on ultrasensitive bioluminescence detection occurs, providing an increase in overall analytical output.
Resumo:
The consumer demand for natural, minimally processed, fresh like and functional food has lead to an increasing interest in emerging technologies. The aim of this PhD project was to study three innovative food processing technologies currently used in the food sector. Ultrasound-assisted freezing, vacuum impregnation and pulsed electric field have been investigated through laboratory scale systems and semi-industrial pilot plants. Furthermore, analytical and sensory techniques have been developed to evaluate the quality of food and vegetable matrix obtained by traditional and emerging processes. Ultrasound was found to be a valuable technique to improve the freezing process of potatoes, anticipating the beginning of the nucleation process, mainly when applied during the supercooling phase. A study of the effects of pulsed electric fields on phenol and enzymatic profile of melon juice has been realized and the statistical treatment of data was carried out through a response surface method. Next, flavour enrichment of apple sticks has been realized applying different techniques, as atmospheric, vacuum, ultrasound technologies and their combinations. The second section of the thesis deals with the development of analytical methods for the discrimination and quantification of phenol compounds in vegetable matrix, as chestnut bark extracts and olive mill waste water. The management of waste disposal in mill sector has been approached with the aim of reducing the amount of waste, and at the same time recovering valuable by-products, to be used in different industrial sectors. Finally, the sensory analysis of boiled potatoes has been carried out through the development of a quantitative descriptive procedure for the study of Italian and Mexican potato varieties. An update on flavour development in fresh and cooked potatoes has been realized and a sensory glossary, including general and specific definitions related to organic products, used in the European project Ecropolis, has been drafted.