998 resultados para Analytic representation for propagator


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Management control in public university hospitals is a challenging task because of continuous changes due to external pressures (e.g. economic pressures, stakeholder focuses and scientific progress) and internal complexities (top management turnover, shared leadership, technological evolution, and researcher oriented mission). Interactive budgeting contributed to improving vertical and horizontal communication between hospital and stakeholders and between different organizational levels. This paper describes an application of Analytic Hierarchy Process (AHP) to enhance interactive budgeting in one of the biggest public university hospital in Italy. AHP improved budget allocation facilitating elicitation and formalization of units' needs. Furthermore, AHP facilitated vertical communication among manager and stakeholders, as it allowed multilevel hierarchical representation of hospital needs, and horizontal communication among staff of the same hospital, as it allowed units' need prioritization and standardization, with a scientific multi-criteria approach, without using complex mathematics. Finally, AHP allowed traceability of a complex decision making processes (as budget allocation), this aspect being of paramount importance in public sectors, where managers are called to respond to many different stakeholders about their choices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gaussian wave-packet phase-space representation is used to show that the expansion in powers of a of the quantum Liouville propagator leads, in the zeroth-order term, to results close to those obtained in the statistical quasiclassical method of Lee and Scully in the Weyl-Wigner picture. It is also verified that, propagating the Wigner distribution along the classical trajectories, the amount of error is less than that coming from propagating the Gaussian distribution along classical trajectories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the analytic properties of finite-temperature self-energies of bosons interacting with fermions at one-loop order. A simple boson-fermion model was chosen due to its interesting features of having two distinct couplings of bosons with fermions. This leads to a quite different analytic behavior of the bosons self-energies as the external momentum K-mu=(k(0),k) approaches zero in the two possible limits. It is shown that the plasmon and Debye masses are consistently obtained at the pole of the corrected propagator even when the self-energy is analytic at the origin in the frequency-momentum space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chiral symmetry breaking in QCD is studied introducing a confining effective propagator, as proposed recently by Cornwall, and considering the effect of dynamically massive gluons. The effective confining propagator has the form 1/(k2 +m2)2 and we study the bifurcation equation finding limits on the parameter m below which a satisfactory fermion mass solution is generated. Since the coupling constant and gluon propagator are damped in the infrared, due to the presence of a dynamical gluon mass, the major part of the chiral breaking is only due to the confining propagator and related to the low momentum region of the gap equation. We study the asymptotic behavior of the gap equation containing this confinement effect and massive gluon exchange, and find that the symmetry breaking can be approximated by an effective four-fermion interaction generated by the confining propagator. We compute some QCD chiral parameters as a function of m, finding values compatible with the experimental data. We find a simple approximate relation between the fermion condensate and dynamical mass for a given representation as a function of the parameters appearing in the effective confining propagator. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an analytic description of numerical results for the Landau-gauge SU(2) gluon propagator D(p(2)), obtained from lattice simulations (in the scaling region) for the largest lattice sizes to date, in d = 2, 3 and 4 space-time dimensions. Fits to the gluon data in 3d and in 4d show very good agreement with the tree-level prediction of the refined Gribov-Zwanziger (RGZ) framework, supporting a massive behavior for D(p(2)) in the infrared limit. In particular, we investigate the propagator's pole structure and provide estimates of the dynamical mass scales that can be associated with dimension-two condensates in the theory. In the 2d case, fitting the data requires a noninteger power of the momentum p in the numerator of the expression for D(p(2)). In this case, an infinite-volume-limit extrapolation gives D(0) = 0. Our analysis suggests that this result is related to a particular symmetry in the complex-pole structure of the propagator and not to purely imaginary poles, as would be expected in the original Gribov-Zwanziger scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study general properties of the Landau-gauge Gribov ghost form factor sigma(p(2)) for SU(N-c) Yang-Mills theories in the d-dimensional case. We find a qualitatively different behavior for d = 3, 4 with respect to the d = 2 case. In particular, considering any (sufficiently regular) gluon propagator D(p(2)) and the one-loop-corrected ghost propagator, we prove in the 2d case that the function sigma(p(2)) blows up in the infrared limit p -> 0 as -D(0) ln(p(2)). Thus, for d = 2, the no-pole condition sigma(p(2)) < 1 (for p(2) > 0) can be satisfied only if the gluon propagator vanishes at zero momentum, that is, D(0) = 0. On the contrary, in d = 3 and 4, sigma(p(2)) is finite also if D(0) > 0. The same results are obtained by evaluating the ghost propagator G(p(2)) explicitly at one loop, using fitting forms for D(p(2)) that describe well the numerical data of the gluon propagator in two, three and four space-time dimensions in the SU(2) case. These evaluations also show that, if one considers the coupling constant g(2) as a free parameter, the ghost propagator admits a one-parameter family of behaviors (labeled by g(2)), in agreement with previous works by Boucaud et al. In this case the condition sigma(0) <= 1 implies g(2) <= g(c)(2), where g(c)(2) is a "critical" value. Moreover, a freelike ghost propagator in the infrared limit is obtained for any value of g(2) smaller than g(c)(2), while for g(2) = g(c)(2) one finds an infrared-enhanced ghost propagator. Finally, we analyze the Dyson-Schwinger equation for sigma(p(2)) and show that, for infrared-finite ghost-gluon vertices, one can bound the ghost form factor sigma(p(2)). Using these bounds we find again that only in the d = 2 case does one need to impose D(0) = 0 in order to satisfy the no-pole condition. The d = 2 result is also supported by an analysis of the Dyson-Schwinger equation using a spectral representation for the ghost propagator. Thus, if the no-pole condition is imposed, solving the d = 2 Dyson-Schwinger equations cannot lead to a massive behavior for the gluon propagator. These results apply to any Gribov copy inside the so-called first Gribov horizon; i.e., the 2d result D(0) = 0 is not affected by Gribov noise. These findings are also in agreement with lattice data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complementing our recent work on subspace wavepacket propagation [Chem. Phys. Lett. 336 (2001) 149], we introduce a Lanczos-based implementation of the Faber polynomial quantum long-time propagator. The original version [J. Chem. Phys. 101 (1994) 10493] implicitly handles non-Hermitian Hamiltonians, that is, those perturbed by imaginary absorbing potentials to handle unwanted reflection effects. However, like many wavepacket propagation schemes, it encounters a bottleneck associated with dense matrix-vector multiplications. Our implementation seeks to reduce the quantity of such costly operations without sacrificing numerical accuracy. For some benchmark scattering problems, our approach compares favourably with the original. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies have attempted to identify the different cognitive components of body representation (BR). Due to methodological issues, the data reported in these studies are often confusing. Here we summarize the fMRI data from previous studies and explore the possibility of a neural segregation between BR supporting actions (body-schema, BS) or not (non-oriented-to-action-body-representation, NA). We performed a general activation likelihood estimation meta-analysis of 59 fMRI experiments and two individual meta-analyses to identify the neural substrates of different BR. Body processing involves a wide network of areas in occipital, parietal, frontal and temporal lobes. NA selectively activates the somatosensory primary cortex and the supramarginal gyrus. BS involves the primary motor area and the right extrastriate body area. Our data suggest that motor information and recognition of body parts are fundamental to build BS. Instead, sensory information and processing of the egocentric perspective are more important for NA. In conclusion, our results strongly support the idea that different and segregated neural substrates are involved in body representations orient or not to actions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.