979 resultados para Análise wavelet
Resumo:
Este trabalho apresenta um sistema de classificação de voz disfônica utilizando a Transformada Wavelet Packet (WPT) e o algoritmo Best Basis (BBA) como redutor de dimensionalidade e seis Redes Neurais Artificiais (ANN) atuando como um conjunto de sistemas denominados “especialistas”. O banco de vozes utilizado está separado em seis grupos de acordo com as similaridades patológicas (onde o 6o grupo é o dos pacientes com voz normal). O conjunto de seis ANN foi treinado, com cada rede especializando-se em um determinado grupo. A base de decomposição utilizada na WPT foi a Symlet 5 e a função custo utilizada na Best Basis Tree (BBT) gerada com o BBA, foi a entropia de Shannon. Cada ANN é alimentada pelos valores de entropia dos nós da BBT. O sistema apresentou uma taxa de sucesso de 87,5%, 95,31%, 87,5%, 100%, 96,87% e 89,06% para os grupos 1 ao 6 respectivamente, utilizando o método de Validação Cruzada Múltipla (MCV). O poder de generalização foi medido utilizando o método de MCV com a variação Leave-One-Out (LOO), obtendo erros em média de 38.52%, apontando a necessidade de aumentar o banco de vozes disponível.
Resumo:
This work proposes a model to investigate the use of a cylindrical antenna used in the thermal method of recovering through electromagnetic radiation of high-viscosity oil. The antenna has a simple geometry, adapted dipole type, and it can be modelled by using Maxwell s equation. The wavelet transforms are used as basis functions and applied in conjunction with the method of moments to obtain the current distribution in the antenna. The electric field, power and temperature distribution are carefully calculated for the analysis of the antenna as electromagnetic heating. The energy performance is analyzed based on thermo-fluid dynamic simulations at field scale, and through the adaptation in the Steam Thermal and Advanced Processes Reservoir Simulator (STARS) by Computer Modelling Group (CMG). The model proposed and the numerical results obtained are stable and presented good agreement with the results reported in the specialized literature
Resumo:
Although it has been suggested that retinal vasculature is a diffusion-limited aggregation (DLA) fractal, no study has been dedicated to standardizing its fractal analysis . The aims of this project was to standardize a method to estimate the fractal dimensions of retinal vasculature and to characterize their normal values; to determine if this estimation is dependent on skeletization and on segmentation and calculation methods; to assess the suitability of the DLA model and to determine the usefulness of log-log graphs in characterizing vasculature fractality . To achieve these aims, the information, mass-radius and box counting dimensions of 20 eyes vasculatures were compared when the vessels were manually or computationally segmented; the fractal dimensions of the vasculatures of 60 eyes of healthy volunteers were compared with those of 40 DLA models and the log-log graphs obtained were compared with those of known fractals and those of non-fractals. The main results were: the fractal dimensions of vascular trees were dependent on segmentation methods and dimension calculation methods, but there was no difference between manual segmentation and scale-space, multithreshold and wavelet computational methods; the means of the information and box dimensions for arteriolar trees were 1.29. against 1.34 and 1.35 for the venular trees; the dimension for the DLA models were higher than that for vessels; the log-log graphs were straight, but with varying local slopes, both for vascular trees and for fractals and non-fractals. This results leads to the following conclusions: the estimation of the fractal dimensions for retinal vasculature is dependent on its skeletization and on the segmentation and calculation methods; log-log graphs are not suitable as a fractality test; the means of the information and box counting dimensions for the normal eyes were 1.47 and 1.43, respectively, and the DLA model with optic disc seeding is not sufficient for retinal vascularization modeling
Resumo:
The skin cancer is the most common of all cancers and the increase of its incidence must, in part, caused by the behavior of the people in relation to the exposition to the sun. In Brazil, the non-melanoma skin cancer is the most incident in the majority of the regions. The dermatoscopy and videodermatoscopy are the main types of examinations for the diagnosis of dermatological illnesses of the skin. The field that involves the use of computational tools to help or follow medical diagnosis in dermatological injuries is seen as very recent. Some methods had been proposed for automatic classification of pathology of the skin using images. The present work has the objective to present a new intelligent methodology for analysis and classification of skin cancer images, based on the techniques of digital processing of images for extraction of color characteristics, forms and texture, using Wavelet Packet Transform (WPT) and learning techniques called Support Vector Machine (SVM). The Wavelet Packet Transform is applied for extraction of texture characteristics in the images. The WPT consists of a set of base functions that represents the image in different bands of frequency, each one with distinct resolutions corresponding to each scale. Moreover, the characteristics of color of the injury are also computed that are dependants of a visual context, influenced for the existing colors in its surround, and the attributes of form through the Fourier describers. The Support Vector Machine is used for the classification task, which is based on the minimization principles of the structural risk, coming from the statistical learning theory. The SVM has the objective to construct optimum hyperplanes that represent the separation between classes. The generated hyperplane is determined by a subset of the classes, called support vectors. For the used database in this work, the results had revealed a good performance getting a global rightness of 92,73% for melanoma, and 86% for non-melanoma and benign injuries. The extracted describers and the SVM classifier became a method capable to recognize and to classify the analyzed skin injuries
Resumo:
In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed
Resumo:
This work proposes the development of a Computer System for Analysis of Mammograms SCAM, that aids the doctor specialist in the identification and analysis of existent lesions in digital mammograms. The computer system for digital mammograms processing will make use of a group of techniques of Digital Image Processing (DIP), with the purpose of aiding the medical professional to extract the information contained in the mammogram. This system possesses an interface of easy use for the user, allowing, starting from the supplied mammogram, a group of processing operations, such as, the enrich of the images through filtering techniques, the segmentation of areas of the mammogram, the calculation the area of the lesions, thresholding the lesion, and other important tools for the medical professional's diagnosis. The Wavelet Transform will used and integrated into the computer system, with the objective of allowing a multiresolution analysis, thus supplying a method for identifying and analyzing microcalcifications
Resumo:
The electric energy is essential to the development of modern society and its increasing demand in recent years, effect from population and economic growth, becomes the companies more interested in the quality and continuity of supply, factors regulated by ANEEL (Agência Nacional de Energia Elétrica). These factors must be attended when a permanent fault occurs in the system, where the defect location that caused the power interruption should be identified quickly, which is not a simple assignment because the current systems complexity. An example of this occurs in multiple terminals transmission lines, which interconnect existing circuits to feed the demand. These transmission lines have been adopted as a feasible solution to suply loads of magnitudes that do not justify economically the construction of new substations. This paper presents a fault location algorithm for multiple terminals transmission lines - two and three terminals. The location method is based on the use of voltage and current fundamental phasors, as well as the representation of the line through its series impedance. The wavelet transform is an effective mathematical tool in signals analysis with discontinuities and, therefore, is used to synchronize voltage and current data. The Fourier transform is another tool used in this work for extract voltage and current fundamental phasors. Tests to validate the location algorithm applicability used data from faulty signals simulated in ATP (Alternative Transients Program) as well as real data obtained from oscillographic recorders installed on CHESF s lines.
Resumo:
Following the new tendency of interdisciplinarity of modern science, a new field called neuroengineering has come to light in the last decades. After 2000, scientific journals and conferences all around the world have been created on this theme. The present work comprises three different subareas related to neuroengineering and electrical engineering: neural stimulation; theoretical and computational neuroscience; and neuronal signal processing; as well as biomedical engineering. The research can be divided in three parts: (i) A new method of neuronal photostimulation was developed based on the use of caged compounds. Using the inhibitory neurotransmitter GABA caged by a ruthenium complex it was possible to block neuronal population activity using a laser pulse. The obtained results were evaluated by Wavelet analysis and tested by non-parametric statistics. (ii) A mathematical method was created to identify neuronal assemblies. Neuronal assemblies were proposed as the basis of learning by Donald Hebb remain the most accepted theory for neuronal representation of external stimuli. Using the Marcenko-Pastur law of eigenvalue distribution it was possible to detect neuronal assemblies and to compute their activity with high temporal resolution. The application of the method in real electrophysiological data revealed that neurons from the neocortex and hippocampus can be part of the same assembly, and that neurons can participate in multiple assemblies. (iii) A new method of automatic classification of heart beats was developed, which does not rely on a data base for training and is not specialized in specific pathologies. The method is based on Wavelet decomposition and normality measures of random variables. Throughout, the results presented in the three fields of knowledge represent qualification in neural and biomedical engineering
Resumo:
Digital signal processing (DSP) aims to extract specific information from digital signals. Digital signals are, by definition, physical quantities represented by a sequence of discrete values and from these sequences it is possible to extract and analyze the desired information. The unevenly sampled data can not be properly analyzed using standard techniques of digital signal processing. This work aimed to adapt a technique of DSP, the multiresolution analysis, to analyze unevenly smapled data, to aid the studies in the CoRoT laboratory at UFRN. The process is based on re-indexing the wavelet transform to handle unevenly sampled data properly. The was efective presenting satisfactory results
Resumo:
One of the main goals of CoRoT Natal Team is the determination of rotation period for thousand of stars, a fundamental parameter for the study of stellar evolutionary histories. In order to estimate the rotation period of stars and to understand the associated uncertainties resulting, for example, from discontinuities in the curves and (or) low signal-to-noise ratio, we have compared three different methods for light curves treatment. These methods were applied to many light curves with different characteristics. First, a Visual Analysis was undertaken for each light curve, giving a general perspective on the different phenomena reflected in the curves. The results obtained by this method regarding the rotation period of the star, the presence of spots, or the star nature (binary system or other) were then compared with those obtained by two accurate methods: the CLEANest method, based on the DCDFT (Date Compensated Discrete Fourier Transform), and the Wavelet method, based on the Wavelet Transform. Our results show that all three methods have similar levels of accuracy and can complement each other. Nevertheless, the Wavelet method gives more information about the star, from the wavelet map, showing the variations of frequencies over time in the signal. Finally, we discuss the limitations of these methods, the efficiency to give us informations about the star and the development of tools to integrate different methods into a single analysis
Resumo:
Oil prospecting is one of most complex and important features of oil industry Direct prospecting methods like drilling well logs are very expensive, in consequence indirect methods are preferred. Among the indirect prospecting techniques the seismic imaging is a relevant method. Seismic method is based on artificial seismic waves that are generated, go through the geologic medium suffering diffraction and reflexion and return to the surface where they are recorded and analyzed to construct seismograms. However, the seismogram contains not only actual geologic information, but also noise, and one of the main components of the noise is the ground roll. Noise attenuation is essential for a good geologic interpretation of the seismogram. It is common to study seismograms by using time-frequency transformations that map the seismic signal into a frequency space where it is easier to remove or attenuate noise. After that, data is reconstructed in the original space in such a way that geologic structures are shown in more detail. In addition, the curvelet transform is a new and effective spectral transformation that have been used in the analysis of complex data. In this work, we employ the curvelet transform to represent geologic data using basis functions that are directional in space. This particular basis can represent more effectively two dimensional objects with contours and lines. The curvelet analysis maps real space into frequencies scales and angular sectors in such way that we can distinguish in detail the sub-spaces where is the noise and remove the coefficients corresponding to the undesired data. In this work we develop and apply the denoising analysis to remove the ground roll of seismograms. We apply this technique to a artificial seismogram and to a real one. In both cases we obtain a good noise attenuation
Resumo:
In this work we presented an exhibition of the mathematical theory of orthogonal compact support wavelets in the context of multiresoluction analysis. These are particularly attractive wavelets because they lead to a stable and very efficient algorithm, that is Fast Transform Wavelet (FWT). One of our objectives is to develop efficient algorithms for calculating the coefficients wavelet (FWT) through the pyramid algorithm of Mallat and to discuss his connection with filters Banks. We also studied the concept of multiresoluction analysis, that is the context in that wavelets can be understood and built naturally, taking an important step in the change from the Mathematical universe (Continuous Domain) for the Universe of the representation (Discret Domain)
Resumo:
GPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and / or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)