872 resultados para Análise de séries temporais - Métodos de simulação


Relevância:

100.00% 100.00%

Publicador:

Resumo:

É fato comum na teoria econômica que os indivíduos reagem a valores correntes de variáveis e a seus valores esperados no futuro. Como as expectativas se formam ainda é matéria de debates. É improvável que exista um único mecanismo explicativo. Propomos como uma importante aplicação do estudo de séries de tempo, a geração de modelos de formação de expectativas através de tais técnicas. Neste trabalho descrevemos e discutimos os modelos de formação de expectativas mais usuais empregados em estudos econômicos passados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As variáveis econômicas são frequentemente governadas por processos dinâmicos e não-lineares que podem gerar relações de dependência de longo prazo e padrões cíclicos não-periódicos com mudanças abruptas de tendências. Para o caso dos preços agrícolas este comportamento não é diferente e as peculiaridades destes mercados podem gerar séries temporais fracionalmente integradas, cujas singularidades não seriam adequadamente capturadas pelos tradicionais modelos analíticos fundamentados na hipótese dos mercados eficientes e de passeio aleatório. Sendo assim, o presente estudo buscou investigar a presença de estruturas fractais no mercado à vista de algumas das principais commodities agrícolas brasileiras: café, boi gordo, açúcar, milho, soja e bezerro. Foram empregadas técnicas tradicionais e específicas para a análise de séries temporais fractais como a análise de R/S e a aplicação de modelos das famílias ARFIMA e FIGARCH. Os resultados indicaram que, com exceção do bezerro, o componente de drift destas séries não apresentou comportamento fractal, ao contrário do observado para o componente da volatilidade, que apresentou aspecto de estrutura fractal para todas as commodities analisadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este Trabalho se Dedica ao exercício empírico de gerar mais restrições ao modelo de apreçamento de ativos com séries temporais desenvolvido por Hansen e Singleton JPE 1983. As restrições vão, desde um simples aumento qualitativo nos ativos estudados até uma extensão teórica proposta a partir de um estimador consistente do fator estocástico de desconto. As estimativas encontradas para a aversão relativa ao risco do agente representativo estão dentro do esperado, na maioria dos casos, já que atingem valores já encontrados na literatura além do fato destes valores serem economicamente plausíveis. A extensão teórica proposta não atingiu resultados esperados, parecendo melhorar a estimação do sistema marginalmente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A análise das séries temporais de valores inteiros tornou-se, nos últimos anos, uma área de investigação importante, não só devido à sua aplicação a dados de contagem provenientes de diversos campos da ciência, mas também pelo facto de ser uma área pouco explorada, em contraste com a análise séries temporais de valores contínuos. Uma classe que tem obtido especial relevo é a dos modelos baseados no operador binomial thinning, da qual se destaca o modelo auto-regressivo de valores inteiros de ordem p. Esta classe é muito vasta, pelo que este trabalho tem como objectivo dar um contributo para a análise estatística de processos de contagem que lhe pertencem. Esta análise é realizada do ponto de vista da predição de acontecimentos, aos quais estão associados mecanismos de alarme, e também da introdução de novos modelos que se baseiam no referido operador. Em muitos fenómenos descritos por processos estocásticos a implementação de um sistema de alarmes pode ser fundamental para prever a ocorrência de um acontecimento futuro. Neste trabalho abordam-se, nas perspectivas clássica e bayesiana, os sistemas de alarme óptimos para processos de contagem, cujos parâmetros dependem de covariáveis de interesse e que variam no tempo, mais concretamente para o modelo auto-regressivo de valores inteiros não negativos com coeficientes estocásticos, DSINAR(1). A introdução de novos modelos que pertencem à classe dos modelos baseados no operador binomial thinning é feita quando se propõem os modelos PINAR(1)T e o modelo SETINAR(2;1). O modelo PINAR(1)T tem estrutura periódica, cujas inovações são uma sucessão periódica de variáveis aleatórias independentes com distribuição de Poisson, o qual foi estudado com detalhe ao nível das suas propriedades probabilísticas, métodos de estimação e previsão. O modelo SETINAR(2;1) é um processo auto-regressivo de valores inteiros, definido por limiares auto-induzidos e cujas inovações formam uma sucessão de variáveis independentes e identicamente distribuídas com distribuição de Poisson. Para este modelo estudam-se as suas propriedades probabilísticas e métodos para estimar os seus parâmetros. Para cada modelo introduzido, foram realizados estudos de simulação para comparar os métodos de estimação que foram usados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modelação e análise de séries temporais de valores inteiros têm sido alvo de grande investigação e desenvolvimento nos últimos anos, com aplicações várias em diversas áreas da ciência. Nesta tese a atenção centrar-se-á no estudo na classe de modelos basedos no operador thinning binomial. Tendo como base o operador thinning binomial, esta tese focou-se na construção e estudo de modelos SETINAR(2; p(1); p(2)) e PSETINAR(2; 1; 1)T , modelos autorregressivos de valores inteiros com limiares autoinduzidos e dois regimes, admitindo que as inovações formam uma sucessão de variáveis independentes com distribuição de Poisson. Relativamente ao primeiro modelo analisado, o modelo SETINAR(2; p(1); p(2)), além do estudo das suas propriedades probabilísticas e de métodos, clássicos e bayesianos, para estimar os parâmetros, analisou-se a questão da seleção das ordens, no caso de elas serem desconhecidas. Com este objetivo consideraram-se algoritmos de Monte Carlo via cadeias de Markov, em particular o algoritmo Reversible Jump, abordando-se também o problema da seleção de modelos, usando metodologias clássica e bayesiana. Complementou-se a análise através de um estudo de simulação e uma aplicação a dois conjuntos de dados reais. O modelo PSETINAR(2; 1; 1)T proposto, é também um modelo autorregressivo com limiares autoinduzidos e dois regimes, de ordem unitária em cada um deles, mas apresentando uma estrutura periódica. Estudaram-se as suas propriedades probabilísticas, analisaram-se os problemas de inferência e predição de futuras observações e realizaram-se estudos de simulação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multivariate t models are symmetric and with heavier tail than the normal distribution, important feature in financial data. In this theses is presented the Bayesian estimation of a dynamic factor model, where the factors follow a multivariate autoregressive model, using multivariate t distribution. Since the multivariate t distribution is complex, it was represented in this work as a mix between a multivariate normal distribution and a square root of a chi-square distribution. This method allowed to define the posteriors. The inference on the parameters was made taking a sample of the posterior distribution, through the Gibbs Sampler. The convergence was verified through graphical analysis and the convergence tests Geweke (1992) and Raftery & Lewis (1992a). The method was applied in simulated data and in the indexes of the major stock exchanges in the world.