954 resultados para Amyloid formation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diabetes is a chronic disease requiring continuous medical supervision and patient education to prevent acute secondary complications. In this study, we have harnessed the inherent property of insulin to aggregate into an oligomeric intermediate on the pathway to amyloid formation, to generate a form that exhibits controlled and sustained release for extended periods. Administration of a single dose of the insulin oligomer, defined here as the supramolecular insulin assembly II (SIA-II), to experimental animals rendered diabetic by streptozotocin or alloxan, released the hormone capable of maintaining physiologic glucose levels for > 120 days for bovine and > 140 days for recombinant human insulin without fasting hypoglycemia. Moreover, the novel SIA-II described here not only improved the glycemic control, but also reduced the extent of secondary diabetic complications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The self-assembly of three cosmetically active peptide amphiphiles C16-GHK, C16-KT, and C16-KTTKS (C16 denotes a hexadecyl, palmitoyl chain) used in commercial skin care products is examined. A range of spectroscopic, microscopic, and X-ray scattering methods is used to probe the secondary structure, aggregate morphology, and the nanostructure. Peptide amphiphile (PA) C16-KTTKS forms flat tapes and extended fibrillar structures with high β-sheet content. In contrast, C16-KT and C16-GHK exhibit crystal-like aggregates with, in the case of the latter PA, lower β-sheet content. All three PA samples show spacings from bilayer structures in small-angle X-ray scattering profiles, and all three have similar critical aggregation concentrations, this being governed by the lipid chain length. However, only C16-KTTKS is stained by Congo red, a diagnostic dye used to detect amyloid formation, and this PA also shows a highly aligned cross-β X-ray diffraction pattern consistent with the high β-sheet content in the self-assembled aggregates. These findings may provide important insights relevant to the role of self-assembled aggregates on the reported collagen-stimulating properties of these PAs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This Ph.D. candidate thesis collects the research work I conducted under the supervision of Prof.Bruno Samor´ı in 2005,2006 and 2007. Some parts of this work included in the Part III have been begun by myself during my undergraduate thesis in the same laboratory and then completed during the initial part of my Ph.D. thesis: the whole results have been included for the sake of understanding and completeness. During my graduate studies I worked on two very different protein systems. The theorical trait d’union between these studies, at the biological level, is the acknowledgement that protein biophysical and structural studies must, in many cases, take into account the dynamical states of protein conformational equilibria and of local physico-chemical conditions where the system studied actually performs its function. This is introducted in the introductory part in Chapter 2. Two different examples of this are presented: the structural significance deriving from the action of mechanical forces in vivo (Chapter 3) and the complexity of conformational equilibria in intrinsically unstructured proteins and amyloid formation (Chapter 4). My experimental work investigated both these examples by using in both cases the single molecule force spectroscopy technique (described in Chapter 5 and Chapter 6). The work conducted on angiostatin focused on the characterization of the relationships between the mechanochemical properties and the mechanism of action of the angiostatin protein, and most importantly their intertwining with the further layer of complexity due to disulfide redox equilibria (Part III). These studies were accompanied concurrently by the elaboration of a theorical model for a novel signalling pathway that may be relevant in the extracellular space, detailed in Chapter 7.2. The work conducted on -synuclein (Part IV) instead brought a whole new twist to the single molecule force spectroscopy methodology, applying it as a structural technique to elucidate the conformational equilibria present in intrinsically unstructured proteins. These equilibria are of utmost interest from a biophysical point of view, but most importantly because of their direct relationship with amyloid aggregation and, consequently, the aetiology of relevant pathologies like Parkinson’s disease. The work characterized, for the first time, conformational equilibria in an intrinsically unstructured protein at the single molecule level and, again for the first time, identified a monomeric folded conformation that is correlated with conditions leading to -synuclein and, ultimately, Parkinson’s disease. Also, during the research work, I found myself in the need of a generalpurpose data analysis application for single molecule force spectroscopy data analysis that could solve some common logistic and data analysis problems that are common in this technique. I developed an application that addresses some of these problems, herein presented (Part V), and that aims to be publicly released soon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado, Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The propensity of protein molecules to self-assemble into highly ordered, fibrillar aggregates lies at the heart of understanding many disorders ranging from Alzheimer's disease to systemic lysozyme amyloidosis. In this paper we use highly accurate kinetic measurements of amyloid fibril growth in combination with spectroscopic tools to quantify the effect of modifications in solution conditions and in the amino acid sequence of human lysozyme on its propensity to form amyloid fibrils under acidic conditions. We elucidate and quantify the correlation between the rate of amyloid growth and the population of nonnative states, and we show that changes in amyloidogenicity are almost entirely due to alterations in the stability of the native state, while other regions of the global free-energy surface remain largely unmodified. These results provide insight into the complex dynamics of a macromolecule on a multidimensional energy landscape and point the way for a better understanding of amyloid diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synucleins are small proteins that are highly expressed in brain tissue and are localised at presynaptic terminals in neurons. alpha-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms of alpha-synuclein have been associated with autosomal-dominant Parkinson's Disease. A fragment of alpha-synuclein has also been identified as the non-Abeta component of Alzheimer's Disease amyloid. In this review we describe some structural properties of alpha-synuclein and the two mutant forms, as well as alpha-synuclein fragments, with particular emphasis on their ability to form beta-sheet on ageing and aggregate to form amyloid-like fibrils. Differences in the rates of aggregation and morphologies of the fibrils formed by alpha-synuclein and the two mutant proteins are highlighted. Interactions between alpha-synuclein and other proteins, especially those that are components of amyloid or Lewy bodies, are considered. The toxicity of alpha-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synucleins are small proteins that are highly expressed in brain tissue and are localised at presynaptic terminals in neurons. alpha-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms of alpha-synuclein have been associated with autosomal-dominant Parkinson's Disease. A fragment of alpha-synuclein has also been identified as the non-Abeta component of Alzheimer's Disease amyloid. In this review we describe some structural properties of alpha-synuclein and the two mutant forms, as well as alpha-synuclein fragments, with particular emphasis on their ability to form beta-sheet on ageing and aggregate to form amyloid-like fibrils. Differences in the rates of aggregation and morphologies of the fibrils formed by alpha-synuclein and the two mutant proteins are highlighted. Interactions between alpha-synuclein and other proteins, especially those that are components of amyloid or Lewy bodies, are considered. The toxicity of alpha-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

FT-IR data of six terminally blocked tripeptides containing Acp (epsilon-aminocaproic acid) reveals that all of them form supramolecular beta-sheets in the solid state. Single crystal X-ray diffraction studies of two peptides not only support this data but also disclose the fact that the supramolecular beta-sheet formation is initiated via dimer formation. The Scanning Electron Microscopic images of all peptides exhibit amyloid-like fibrils that show green birefringence after binding with Congo red, which is a characteristic feature of many neurodegenerative disease causing amyloid fibrils. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

alpha B-Crystallin is a ubiquitous small heat-shock protein (sHsp) renowned for its chaperone ability to prevent target protein aggregation. It is stress-inducible and its up-regulation is associated with a number of disorders, including those linked to the deposition of misfolded proteins, such as Alzheimer's and Parkinson's diseases. We have characterised the formation of amyloid fibrils by human alpha B-crystallin in detail, and also that of alpha A-crystallin and the disease-related mutant R120G (alpha B-crystallin. We find that the last 12 amino acid residues of the C-terminal region of alpha B-crystallin are predicted from their physico-chemical properties to have a very low propensity to aggregate. H-1 NMR spectroscopy reveals that this hydrophilic C-terminal region is flexible both in its solution state and in amyloid fibrils, where it protrudes from the fibrillar core. We demonstrate, in addition, that the equilibrium between different protofilament assemblies can be manipulated and controlled in vitro to select for particular alpha B-crystallin amyloid morphologies. Overall, this study suggests that there could be a fine balance in vivo between the native functional sHsp state and the formation of amyloid fibrils. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The self-assembly of PEGylated peptides containing a modified sequence from the amyloid beta peptide, YYKLVFF, has been studied in aqueous solution. Two PEG molar masses, PEG1k and PEG3k, were used in the conjugates. It is shown that both YYKLVFF–PEG hybrids form fibrils comprising a peptide core and a PEG corona. The fibrils are much longer for YYKLVFF–PEG1k, pointing to an influence of PEG chain length. The beta-sheet secondary structure of the peptide is retained in the conjugate. Lyotropic liquid crystal phases, specifically nematic and hexagonal columnar phases, are formed at sufficiently high concentration. Flow alignment of these mesophases was investigated by small-angle neutron scattering with in situ steady shearing in a Couette cell. On drying, PEG crystallization occurs leading to characteristic peaks in the X-ray diffraction pattern, and to lamellar structures imaged by atomic force microscopy. The X-ray diffraction pattern retains features of the cross-beta pattern from the beta-sheet structure, showing that this is not disrupted by PEG crystallization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The self-assembly of peptide YYKLVFFC based on a fragment of the amyloid beta (A) peptide, A beta 16-20, KLVFF has been studied in aqueous solution. The peptide is designed with multiple functional residues to examine the interplay between aromatic interactions and charge on the self-assembly, as well as specific transformations such as the pH-induced phenol-phenolate transition of the tyrosine residue. Circular dichroism (CD) and Fourier-transform infrared (FTIR) spectroscopies are used to investigate the conditions for beta-sheet self-assembly and the role of aromatic interactions in the CD spectrum as a function of pH and concentration. The formation of well-defined fibrils at pH 4.7 is confirmed by cryo-TEM (transmission electron microscope) and negative stain TEM. The morphology changes at higher pH, and aggregates of short twisted fibrils are observed at pH 11. Polarized optical microscopy shows birefringence at a low concentration (1 wt.-%) of YYKLVFFC in aqueous solution, and small-angle X-ray scattering was used to probe nematic phase formation in more detail. A pH-induced transition from nematic to isotropic phases is observed on increasing pH that appears to be correlated to a reduction in aggregate anisotropy upon increasing pH.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The amyloid precursor protein (APP) is a type I transmembrane glycoprotein, which resembles a cell surface receptor, comprising a large ectodomain, a single spanning transmembrane part and a short C-terminal, cytoplasmic domain. It belongs to a conserved gene family, with over 17 members, including also the two mammalian APP homologues proteins APLP1 and APLP2 („amyloid precursor like proteins“). APP is encoded by 19 exons, of which exons 7, 8, and 15 can be alternatively spliced to produce three major protein isoforms APP770, APP751 and APP695, reflecting the number of amino acids. The neuronal APP695 is the only isoform that lacks a Kunitz Protease Inhibitor (KPI) domain in its extracellular portion whereas the two larger, peripheral APP isoforms, contain the 57-amino-acid KPI insert. rnRecently, research effort has suggested that APP metabolism and function is thought to be influenced by homodimerization and that the oligomerization state of APP could also play a role in the pathology of Alzheimer's disease (AD), by regulating its processing and amyloid beta production. Several independent studies have shown that APP can form homodimers within the cell, driven by motifs present in the extracellular domain, as well as in the juxtamembrane (JM) and transmembrane (TM) regions of the molecule, whereby the exact molecular mechanism and the origin of dimer formation remains elusive. Therefore, we focused in our study on the actual subcellular origin of APP homodimerization within the cell, an underlying mechanism, and a possible impact on dimerization properties of its homologue APLP1. Furthermore, we analyzed homodimerization of various APP isoforms, in particular APP695, APP751 and APP770, which differ in the presence of a Kunitz-type protease inhibitor domain (KPI) in the extracellular region. In order to assess the cellular origin of dimerization under different cellular conditions, we established a mammalian cell culture model-system in CHO-K1 (chinese hamster ovary) cells, stably overexpressing human APP, harboring dilysine based organelle sorting motifs at the very C-terminus [KKAA-Endoplasmic Reticulum (ER); KKFF-Golgi]. In this study we show that APP exists as disulfide-bound, SDS-stable dimers, when it was retained in the ER, unlike when it progressed further to the cis-Golgi, due to the KKFF ER exit determinant. These stable APP complexes were isolated from cells, and analyzed by SDS–polyacrylamide gel electrophoresis under non-reducing conditions, whereas strong denaturing and reducing conditions completely converted those dimers to monomers. Our findings suggested that APP homodimer formation starts early in the secretory pathway and that the unique oxidizing environment of the ER likely promotes intermolecular disulfide bond formation between APP molecules. We particularly visualized APP dimerization employing a variety of biochemical experiments and investigated the origin of its generation by using a Bimolecular Fluorescence Complementation (BiFC) approach with split GFP-APP chimeras. Moreover, using N-terminal deletion constructs, we demonstrate that intermolecular disulfide linkage between cysteine residues, exclusively located in the extracellular E1 domain, represents another mechanism of how an APP sub-fraction can dimerize within the cell. Additionally, mutational studies revealed that cysteines at positions 98 and 105, embedded in the conserved loop region within the E1 domain, are critical for interchain disulfide bond formation. Using a pharmacological treatment approach, we show that once generated in the oxidative environment of the ER, APP dimers remain stably associated during transport, reaching the plasma membrane. In addition, we demonstrate that APP isoforms, encompassing the KPI domain, exhibit a strongly reduced ability to form cis-directed dimers in the ER, whereas trans-directed cell aggregation of Drosophila Schneider (S2)-cells was isoform independent, mediating cell-cell contacts. Thus, suggesting that steric properties of KPI-APP might be the cause for weaker cis-interaction in the ER, compared to APP695. Finally, we provide evidence that APP/APLP1 heterointeractions are likewise initiated in the ER, suggesting a similar mechanism for heterodimerization. Therefore, dynamic alterations of APP between monomeric, homodimeric, and possibly heterodimeric status could at least partially explain some of the variety in the physiological functions of APP.rn