934 resultados para Amphiphile Copolymere, Blockcopolymere, statistische Copolymere, inverse Emulsionen, Mizellen
Resumo:
Im Rahmen dieser Arbeit wurden neue Ansätze für das Konzept der kapselbasierten Selbstheilungsmaterialien untersucht. Die Verkapselung von Selbstheilungsreagenzien in funktionellen Nanokapseln wurde dabei mittels drei verschiedener Herstellungsmethoden in Miniemulsion durchgeführt. Zunächst wurde die Synthese von Kern-Schale-Partikeln mit verkapselten Monomeren für die Ringöffnungs-Metathese-Polymerisation über freie radikalische Polymerisation in Miniemulsionstropfen beschrieben. Durch orthogonale Reaktionen wurden dabei verschiedene chemische Funktionalisierungen in die Schale eingebracht. Die Rolle des Tensides, das Verhältnis von Kernmaterial zu Monomer sowie die Variation der Lösungsmittelqualität hatte dabei einen Einfluss auf die Struktur der Kolloide. Die Heilungsreagenzien blieben auch nach der Verkapselung aktiv, was durch erfolgreich durchgeführte Selbstheilungsexperimente gezeigt werden konnte. Im zweiten Abschnitt wurde die Synthese von Silica-Nanocontainern für Selbstheilungsmaterialien über Hydrolyse und Polykondensation von Alkoxysilanen an der Grenzfläche der Miniemulsionstropfen beschrieben. Dieser Ansatz ermöglichte die effiziente Verkapselung sowohl von Monomeren als auch von Lösungen der Katalysatoren für die Metathese-Polymerisation in einem Einstufenprozess. Die Größe der Kapseln, die Dicke der Schale und der Feststoffgehalt der Dispersionen konnte dabei in einem weiten Bereich variiert werden. Anhand von erfolgreich durchgeführten Selbstheilungsreaktionen, die über Thermogravimetrie und 13C-NMR-Spektroskopie verfolgt wurden, konnte gezeigt werden, dass die Selbstheilungsreagenzien nach der Verkapselung aktiv blieben. Das dritte Konzept behandelte die Herstellung von polymeren Nanokapseln mittels Emulsions-Lösungsmittelverdampfungstechnik, welche eine milde Methode zur Verkapselung darstellt. Es wurde eine allgemeine und einfache Vorgehensweise beschrieben, in der Selbstheilungsreagenzien in polymeren Nanokapseln unter Verwendung von kommerziell erhältlichen Polymeren als Schalenmaterial verkapselt wurden. Zudem wurden Copolymere aus Styrol und verschiedenen hydrophilen Monomeren über freie radikalische Polymerisation sowie über polymeranaloge Reaktionen hergestellt. Diese statistischen Copolymere waren ebenso wie Blockcopolymere zur Herstellung von wohldefinierten Kern-Schale-Nanopartikeln mittels Emulsions-Lösungsmittelverdampfungsprozess geeignet. rnrnDes Weiteren wurde ein neues Konzept für die Synthese von pH-responsiven Nanokapseln aus tensidfreien Emulsionen unter Verwendung von Copolymeren aus Styrol und Trimethylsilylmethacrylat beschrieben. Der vorgeschlagene synthetische Ansatz ermöglicht dabei die erste Synthese von Nanokapseln über den Emulsions-Lösungsmittelverdampfungsprozess in Abwesenheit eines Tensides. Eine vollständig reversible Aggregation ermöglichte eine leichte Trennung der Nanokapseln von der kontinuierlichen Phase sowie eine Erhöhung der Konzentration der Nanokapseldispersionen auf das bis zu fünffache. Darüber hinaus war es möglich, Selbstheilungsreagenzien in stabilem Zustand zu verkapseln. Abschließend wurde die elektrochemische Abscheidung von mit Monomer gefüllten Nanokapseln in eine Zinkschicht zur Anwendung im Korrosionsschutz behandelt.
Resumo:
In this work, new promising proton conducting fuel cell membrane materials were characterized in terms of their structure and dynamic properties using solid-state nuclear magnetic resonance (NMR) spectroscopy and X-ray diffraction. Structurally different, phosphonic acid (PA) containing materials were systematically evaluated for possible high-temperature operation (e.g. at T>100°C). Notably, 1H, 2H and 31P magic angle spinning (MAS) NMR provided insight into local connectivities and dynamics of the hydrogen bonded network, while packing arrangements were identified by means of heteronuclear dipolar recoupling techniques.rnThe first part of this work introduced rather crystalline, low molecular weight ionomers for proton conducting membranes, where six different geometries such as line, triangle, screw, tetrahedron, square and hexagon, were investigated. The hexagon was identified as the most promising geometry with high-temperature bulk proton conductivities in the range of 10-3 Scm-1 at a relative humidity of 50%. However, 2H NMR and TGA-MS data suggest that the bulk proton transport is mainly due to the presence of crystal water. Single crystal X-ray data revealed that in the tetrahedron phosphonic acids form tetrameric clusters isolating the mobile protons while the phosphonic acids in the hexagon form zigzag-type pathways through the sample.rnThe second part of this work demonstrates how acid-base pairing and the choice of appropriate spacers may influence proton conduction. Different ratios of statistical copolymers of poly (vinylphosphonic acid) and poly (4-vinylpyridine) were measured to derive information about the local structure and chemical changes. Though anhydrous proton conductivities of all statistical copolymers are rather poor, the conductivity increases to 10-2 S cm-1 when exposing the sample to relative humidity of 80%. In contrast to PVPA, anhydride formation of phosphonic acids in the copolymer is not reversible even when exposing the sample to a relative humidity of 100%.rnIn addition, the influence of both spacers and degree of backbone crystallinity on bulk proton conductivity was investigated. Unlike in systems such as poly benzimidazole (PBI), spacers were inserted between the protogenic groups along the backbone. It was found that dilution of the protogenic groups decreases the conductivity, but compared to PVPA, similar apparent activation energies for local motions were obtained from both variable temperature 1H NMR and impedance spectroscopy data. These observations suggest the formation of phosphonic acid clusters with high degrees of local proton motion, where only a fraction of motions contribute to the observable bulk proton conductivity. Additionally, it was shown that gradual changes of the spacer length lead to different morphologies.rnIn summary, applying advanced solid-state NMR and X-ray analysis, structural and dynamic phenomena in proton conducting materials were identified on a molecular level. The results were discussed with respect to different proton conduction mechanisms and may contribute to a more rational design or improvement of proton conducting membranes.rn
Resumo:
Synthesis and characterization of monodisperse oligonucleotide-polypeptide di- and triblock copolymers are described. These block copolymers are promising building blocks for the formation of defined structures by sequential DNA self-assembly. The oligonucleotide sequences (ODN, 46 bases) obtained from standard solid phase synthesis were designed to form four-arm DNA junctions. The hybridization of the four single stranded oligonucleotides at room temperature to a stable four-arm junction is selective and quantitative. The junctions exhibit good thermal stability as proven by polyacrylamide gel electrophoresis (PAGE) and UV analysis. The second block consists of monodisperse elastin-like polypeptides (ELPs) with a pentapeptide repeat unit of (Val-Pro-Gly-Val-Gly) synthesized by genetic engineering. ODN-ELP diblock copolymers were obtained either by thiol coupling or by activated ester chemistry. Taking advantage of the endgroup control of both components (ODN, ELP), combination of the two different synthetic approaches leads to the synthesis of ODN-ELP-ODN triblock copolymers. Dynamic light scattering measurements of the single components and the synthesized diblock copolymers reveal their monodispersity. Hybridization of four ODN-ELP diblock copolymers carrying the four junction sequences shows quantitative self-assembly. In conclusion, this work provides the first example of the synthesis of perfectly defined ODN-ELP block copolymers and their potential use in DNA self-assembly.
Resumo:
A thorough investigation was made of the structure-property relation of well-defined statistical, gradient and block copolymers of various compositions. Among the copolymers studied were those which were synthesized using isobornyl acrylate (IBA) and n-butyl acrylate (nBA) monomer units. The copolymers exhibited several unique properties that make them suitable materials for a range of applications. The thermomechanical properties of these new materials were compared to acrylate homopolymers. By the proper choice of the IBA/nBA monomer ratio, it was possible to tune the glass transition temperature of the statistical P(IBA-co-nBA) copolymers. The measured Tg’s of the copolymers with different IBA/nBA monomer ratios followed a trend that fitted well with the Fox equation prediction. While statistical copolymers showed a single glass transition (Tg between -50 and 90 ºC depending on composition), DSC block copolymers showed two Tg’s and the gradient copolymer showed a single, but very broad, glass transition. PMBL-PBA-PMBL triblock copolymers of different composition ratios were also studied and revealed a microphase separated morphology of mostly cylindrical PMBL domains hexagonally arranged in the PBA matrix. DMA studies confirmed the phase separated morphology of the copolymers. Tensile studies showed the linear PMBL-PBA-PMBL triblock copolymers having a relatively low elongation at break that was increased by replacing the PMBL hard blocks with the less brittle random PMBL-r-PMMA blocks. The 10- and 20-arm PBA-PMBL copolymers which were studied revealed even more unique properties. SAXS results showed a mixture of cylindrical PMBL domains hexagonally arranged in the PBA matrix, as well as lamellar. Despite PMBL’s brittleness, the triblock and multi-arm PBA-PMBL copolymers could become suitable materials for high temperature applications due to PMBL’s high glass transition temperature and high thermal stability. The structure-property relation of multi-arm star PBA-PMMA block copolymers was also investigated. Small-angle X-ray scattering revealed a phase separated morphology of cylindrical PMMA domains hexagonally arranged in the PBA matrix. DMA studies found that these materials possess typical elastomeric behavior in a broad range of service temperatures up to at least 250°C. The ultimate tensile strength and the elastic modulus of the 10- and 20-arm star PBA-PMMA block copolymers are significantly higher than those of their 3-arm or linear ABA type counterparts with similar composition, indicating a strong effect of the number of arms on the tensile properties. Siloxane-based copolymers were also studied and one of the main objectives here was to examine the possibility to synthesize trifluoropropyl-containing siloxane copolymers of gradient distribution of trifluoropropyl groups along the chain. DMA results of the PDMS-PMTFPS siloxane copolymers synthesized via simultaneous copolymerization showed that due to the large difference in reactivity rates of 2,4,6-tris(3,3,3-trifluoropropyl)-2,4,6-trimethylcyclotrisiloxane (F) and hexamethylcyclotrisiloxane (D), a copolymer of almost block structure containing only a narrow intermediate fragment with gradient distribution of the component units was obtained. A more dispersed distribution of the trifluoropropyl groups was obtained by the semi-batch copolymerization process, as the DMA results revealed more ‘‘pure gradient type’’ features for the siloxane copolymers which were synthesized by adding F at a controlled rate to the polymerization of the less reactive D. As with trifluoropropyl-containing siloxane copolymers, vinyl-containing polysiloxanes may be converted to a variety of useful polysiloxane materials by chemical modification. But much like the trifluoropropyl-containing siloxane copolymers, as a result of so much difference in the reactivities between the component units 2,4,6-trivinyl-2,4,6-trimethylcyclotrisiloxane (V) and hexamethylcyclotrisiloxane (D), thermal and mechanical properties of the PDMS-PMVS copolymers obtained by simultaneous copolymerization was similar to those of block copolymers. Only the copolymers obtained by semi-batch method showed properties typical for gradient copolymers.
Resumo:
In dieser Arbeit wurden Kolloide aus flüssigkristallinen Polymeren dargestellt und untersucht.rnrnDie Methode der Dispersionspolymerisation zur Darstellung von Kolloiden aus flüssigkristallinen Polyacrylaten wurde in unpolare Lösungsmittel adaptiert, umrneine Manipulierbarkeit anisotroper Kolloide durch elektrische Felder zu erreichen.rnDazu wurden ein Gemisch aus THF und Siliconöl als Reaktionsmischung gewähltrnund polysiloxanbasierte Polymere und Copolymere als Stabilisatoren eingesetzt.rnDabei auftretende unerwartete Auswirkungen auf die Mesogenkonfiguration führtenrnzu einer Untersuchung der Abhängigkeit der Mesogenkonfigurationen von der Oberflächenverankerung der Mesogene. Schließlich wurde eine Kontrolle derrnOberfl¨achenverankerung der Mesogene und somit eine Kontrolle der Mesogenkonfigurationen unter Ausnutzung der Eigenschaften flüssigkristallin/nicht flüssigkristalliner Blockcopolymere erreicht. Zu diesem Zweck wurde auch ein neuer Makroinitiator entwickelt. Kleine Kolloide konnten mittels eines elektrischen Feldes gedreht bzw. zu Linien angeordnet werden.rnrnEinige neue Polysiloxane wurden zum Einbau in flüssigkristalline Kolloide viarnMiniemulsion synthetisiert. Sie wurden charakterisiert und in Kolloide überführt. Aufgrund zu hoher Übergangstemperaturen konnten bei den meisten jedoch keine Strukturen aus phasenseparierten Polysiloxane gefunden werden. Die Ausbildung der Strukturen in solchen Kolloiden konnte aber trotzdem verstanden werden.rnrnAus vernetzten Hauptkettenpolymeren sollten aktuierende Kolloide hergestelltrnwerden. Dazu wurde das entsprechende Hauptkettenpolymer hergestellt, charakterisiert und per Miniemulsion in Kolloide überführt. Die dargestellten Kolloide wurden unter dem TEM geheizt und zeigten Formänderungen, die jedoch nicht kontrolliert und noch irreversibel waren.
Resumo:
Membrane proteins play an indispensable role in physiological processes. It is, therefore, not surprising that many diseases are based on the malfunction of membrane proteins. Hence membrane proteins and especially G-protein coupled receptors(GPCRs)- the largest subfamily- have become an important drug target. Due to their high selectivity and sensitivity membrane proteins are also feasible for the detection of small quantities of substances with biosensors. Despite this widespread interest in GPCRs due to their importance as drug targets and biosensors there is still a lack of knowledge of structure, function and endogenous ligands for quiet a few of the previously identified receptors.rnBottlenecks in over-expression, purification, reconstitution and handling of membrane proteins arise due to their hydrophobic nature. Therefore the production of reasonable amounts of functional membrane proteins for structural and functional studies is still challenging. Also the limited stability of lipid based membrane systems hampers their application as platforms forrnscreening applications and biosensors.rnIn recent years the in vitro protein synthesis became a promising alternative to gain better yields for expression of membrane proteins in bio-mimetic membrane systems. These expression systems are based on cell extracts. Therefore cellular effects on protein expression are reduced. The open nature of the cell-free expression systems easily allows for the adjustment of reactionrnconditions for the protein of interest. The cell-free expression in the presence of bio-mimetic membrane systems allows the direct incorporation of the membrane proteins and therefore skips the time-consuming purification and reconstitution processes. Amphiphilic block-copolymers emerged as promising alternative for the less stable lipid-based membrane systems. They, likernlipids, form membraneous structures in aqueous solutions but exhibit increased mechanical and chemical stability.rnThe aim of this work was the generation of a GPCR-functionalised membrane system by combining both promising alternatives: in vitro synthesis and polymeric membrane systems. This novel platform should be feasible for the characterisation of the incorporated GPCR. Immunodetection of Dopamine receptor 1 and 2 expressed in diblock- and triblock-polymersomes demonstrated the successful in vitro expression of GPCRs in polymeric membranes. Antibodyrnbinding studies suggested a favoured orientation of dopamine receptors in triblockpolymersomes.rnA dopamine-replacement assay on DRD2-functionalised immobilised triblockpolymersomes confirmed functionality of the receptor in the polymersomes. The altered binding curve suggests an effect of the altered hydrophobic environment presented by the polymer membrane on protein activity.
Poly(lactide): from hyperbranched copolyesters to new block copolymers with functional methacrylates
Resumo:
The prologue of this thesis (Chapter 1.0) gives a general overview on lactone based poly(ester) chemistry with a focus on advanced synthetic strategies for ring-opening polymerization, including the emerging field of organo catalysis. This section is followed by a presentation of the state-of the art regarding the two central fields of the thesis: (i) polyfunctional and branched poly(ester)s in Chapter 1.1 as well as (ii) the development of new poly(ester) based block copolymers with functional methacrylates (Chapter 1.2). Chapter 2 deals with the synthesis of new, non-linear poly(ester) structures. In Chapter 2.1, the synthesis of poly(lactide)-based multiarm stars, prepared via a grafting-from method, is described. The hyperbranched poly(ether)-poly(ol) poly(glycerol) is employed as a hydrophilic core molecule. The resulting star block copolymers exhibit potential as phase transfer agents and can stabilize hydrophilic dyes in a hydrophobic environment. In Chapter 2.2, this approach is expanded to poly(glycolide) multiarm star polymers. The problem of the poor solubility of linear poly(glycolide)s in common organic solvents combined with an improvement of the thermal properties has been approached by the reduction of the total chain length. In Chapter 2.3, the first successful synthesis of hyperbranched poly(lactide)s is presented. The ring-opening, multibranching copolymerization of lactide with the “inimer” 5HDON (a hydroxyl-functional lactone monomer) was carefully examined. Besides a precise molecular characterization involving the determination of the degree of branching, we were able to put forward a reaction model for the formation of branching during polymerization. Several innovative approaches to amphiphilic poly(ester)/poly(methacrylate)-based block copolymers are presented in the third part of the thesis (Chapter 3). Block copolymer build-up especially relies on the combination of ring-opening and living radical polymerization. Atom transfer radical polymerization has been successfully combined with lactide ring-opening, using a “double headed” initiator. This strategy allowed for the realization of poly(lactide)-block-poly(2-hydroxyethyl methacrylate) copolymers, which represent promising materials for tissue engineering scaffolds with anti-fouling properties (Chapter 3.1). The two-step/one-pot approach forgoes the use of protecting groups for HEMA by a careful selection of the reaction conditions. A series of potentially biocompatible and partially biodegradable homo- and block copolymers is described in Chapter 3.2. In order to create a block copolymer with a comparably strong hydrophilic character, a new acetal-protected glycerol monomethacrylate monomer (cis-1,3- benzylidene glycerol methacrylate/BGMA) was designed. The hydrophobic poly(BGMA) could be readily transformed into the hydrophilic and water-soluble poly(iso-glycerol methacrylate) (PIGMA) by mild acidic hydrolysis. Block copolymers of PIGMA and poly(lactide) exhibited interesting spherical aggregates in aqueous environment which could be significantly influenced by variation of the poly(lactide)s stereo-structure. In Chapter 3.3, pH-sensitive poly(ethylene glycol)-b-PBGMA copolymers are described. At slightly acidic pH values (pH 4/37°C), they decompose due to a polarity change of the BGMA block caused by progressing acetal cleavage. This stimuli-responsive behavior renders the system highly attractive for the targeted delivery of anti-cancer drugs. In Chapter 3.4, which was realized in cooperation, the concept of biocompatible, amphiphilic poly(lactide) based polymer drug conjugates, was pursued. This was accomplished in the form of fluorescently labeled poly(HPMA)-b-poly(lactide) copolymers. Fluorescence correlation spectroscopy (FCS) of partially biodegradable block copolymer aggregates exhibited fast cellular uptake by human cervix adenocarcinoma cells without showing toxic effects in the examined concentration range (Chapter 4.1). The current state of further projects which will be pursued in future studies is addressed in Chapter 4. This covers the synthesis of biocompatible star block copolymers (Chapter 4.2) and the development of new methacrylate monomers for biomedical applications (Chapters 4.3 and 4.4). Finally, the further investigation of hydroxyl-functional lactones and carbonates which are promising candidates for the synthesis of new hydrophilic linear or hyperbranched biopolymers, is addressed in Chapter 4.5.
Resumo:
Makromolekulare Wirkstoffträgersysteme sind von starkem Interesse bezüglich der klinischen Anwendung chemotherapeutischer Agenzien. Um ihr klinisches Potential zu untersuchen ist es von besonderer Bedeutung das pharmakokinetische Profil in vivo zu bestimmen. Jede Veränderung der Polymerstruktur beeinflusst die Körperverteilung des entsprechenden Makromoleküls. Aufgrund dessen benötigt man detailliertes Wissen über Struktur-Eigenschaftsbeziehungen im lebenden Organismus, um das Nanocarrier System für zukünftige Anwendungen einzustellen. In dieser Beziehung stellt das präklinische Screening mittels radioaktiver Markierung und Positronen-Emissions-Tomographie eine nützliche Methode für schnelle sowie quantitative Beobachtung von Wirkstoffträgerkandidaten dar. Insbesondere poly(HPMA) und PEG sind im Arbeitsgebiet Polymer-basierter Therapeutika stark verbreitet und von ihnen abgeleitete Strukturen könnten neue Generationen in diesem Forschungsbereich bieten.rnDie vorliegende Arbeit beschreibt die erfolgreiche Synthese verschiedener HPMA und PEG basierter Polymer-Architekturen – Homopolymere, Statistische und Block copolymere – die mittels RAFT und Reaktivesterchemie durchgeführt wurde. Des Weiteren wurden die genannten Polymere mit Fluor-18 und Iod-131 radioaktiv markiert und mit Hilfe von microPET und ex vivo Biodistributionsstudien in tumortragenden Ratten biologisch evaluiert. Die Variation in Polymer-Architektur und darauffolgende Analyse in vivo resultierte in wichtige Schlussfolgerungen. Das hydrophile / lipophile Gleichgewicht hatte einen bedeutenden Einfluss auf das pharmakokinetische Profil, mit besten in vivo Eigenschaften (geringe Aufnahme in Leber und Milz sowie verlängerte Blutzirkulationszeit) für statistische HPMA-LMA copolymere mit steigendem hydrophoben Anteil. Außerdem zeigten Langzeitstudien mit Iod-131 eine verstärkte Retention von hochmolekularen, HPMA basierten statistischen Copolymeren im Tumorgewebe. Diese Beobachtung bestätigte den bekannten EPR-Effekt. Hinzukommend stellen Überstrukturbildung und damit Polymergröße Schlüsselfaktoren für effizientes Tumor-Targeting dar, da Polymerstrukturen über 200 nm in Durchmesser schnell vom MPS erkannt und vom Blutkreislauf eliminiert werden. Aufgrund dessen wurden die hier synthetisierten HPMA Block copolymere mit PEG Seitengruppen chemisch modifiziert, um eine Verminderung in Größe sowie eine Reduktion in Blutausscheidung zu induzieren. Dieser Ansatz führte zu einer erhöhten Tumoranreicherung im Walker 256 Karzinom Modell. Generell wird die Körperverteilung von HPMA und PEG basierten Polymeren stark durch die Polymer-Architektur sowie das Molekulargewicht beeinflusst. Außerdem hängt ihre Effizienz hinsichtlich Tumorbehandlung deutlich von den individuellen Charakteristika des einzelnen Tumors ab. Aufgrund dieser Beobachtungen betont die hier vorgestellte Dissertation die Notwendigkeit einer detaillierten Polymer-Charakterisierung, kombiniert mit präklinischem Screening, um polymere Wirkstoffträgersysteme für individualisierte Patienten-Therapie in der Zukunft maßzuschneidern.rn
Resumo:
In der vorliegenden Arbeit wurde gezeigt, wie man das Potential nanopartikulärer Systeme, die vorwiegend via Miniemulsion hergestellt wurden, im Hinblick auf „Drug Delivery“ ausnutzen könnte, indem ein Wirkstoffmodell auf unterschiedliche Art und Weise intrazellulär freigesetzt wurde. Dies wurde hauptsächlich mittels konfokaler Laser-Raster-Mikrokopie (CLSM) in Kombination mit dem Bildbearbeitungsprogramm Volocity® analysiert.rnPBCA-Nanokapseln eigneten sich besonders, um hydrophile Substanzen wie etwa Oligonukleotide zu verkapseln und sie so auf ihrem Transportweg in die Zellen vor einem etwaigen Abbau zu schützen. Es konnte eine Freisetzung der Oligonukleotide in den Zellen aufgrund der elektrostatischen Anziehung des mitochondrialen Membranpotentials nachgewiesen werden. Dabei war die Kombination aus Oligonukleotid und angebundenem Cyanin-Farbstoff (Cy5) an der 5‘-Position der Oligonukleotid-Sequenz ausschlaggebend. Durch quantitative Analysen mittels Volocity® konnte die vollständige Kolokalisation der freigesetzten Oligonukleotide an Mitochondrien bewiesen werden, was anhand der Kolokalisationskoeffizienten „Manders‘ Coefficients“ M1 und M2 diskutiert wurde. Es konnte ebenfalls aufgrund von FRET-Studien doppelt markierter Oligos gezeigt werden, dass die Oligonukleotide weder beim Transport noch bei der Freisetzung abgebaut wurden. Außerdem wurde aufgeklärt, dass nur der Inhalt der Nanokapseln, d. h. die Oligonukleotide, an Mitochondrien akkumulierte, das Kapselmaterial selbst jedoch in anderen intrazellulären Bereichen aufzufinden war. Eine Kombination aus Cyanin-Farbstoffen wie Cy5 mit einer Nukleotidsequenz oder einem Wirkstoff könnte also die Basis für einen gezielten Wirkstofftransport zu Mitochondrien liefern bzw. die Grundlage schaffen, eine Freisetzung aus Kapseln ins Zytoplasma zu gewährleisten.rnDer vielseitige Einsatz der Miniemulsion gestattete es, nicht nur Kapseln sondern auch Nanopartikel herzustellen, in welchen hydrophobe Substanzen im Partikelkern eingeschlossen werden konnten. Diese auf hydrophobe Wechselwirkungen beruhende „Verkapselung“ eines Wirkstoffmodells, in diesem Fall PMI, wurde bei PDLLA- bzw. PS-Nanopartikeln ausgenutzt, welche durch ein HPMA-basiertes Block-Copolymer stabilisiert wurden. Dabei konnte gezeigt werden, dass das hydrophobe Wirkstoffmodell PMI innerhalb kürzester Zeit in die Zellen freigesetzt wurde und sich in sogenannte „Lipid Droplets“ einlagerte, ohne dass die Nanopartikel selbst aufgenommen werden mussten. Daneben war ein intrazelluläres Ablösen des stabilisierenden Block-Copolymers zu verzeichnen, welches rn8 h nach Partikelaufnahme erfolgte und ebenfalls durch Analysen mittels Volocity® untermauert wurde. Dies hatte jedoch keinen Einfluss auf die eigentliche Partikelaufnahme oder die Freisetzung des Wirkstoffmodells. Ein großer Vorteil in der Verwendung des HPMA-basierten Block-Copolymers liegt darin begründet, dass auf zeitaufwendige Waschschritte wie etwa Dialyse nach der Partikelherstellung verzichtet werden konnte, da P(HPMA) ein biokompatibles Polymer ist. Auf der anderen Seite hat man aufgrund der Syntheseroute dieses Block-Copolymers vielfältige Möglichkeiten, Funktionalitäten wie etwa Fluoreszenzmarker einzubringen. Eine kovalente Anbindung eines Wirkstoffs ist ebenfalls denkbar, welcher intrazellulär z. B. aufgrund von enzymatischen Abbauprozessen langsam freigesetzt werden könnte. Somit bietet sich die Möglichkeit mit Nanopartikeln, die durch HPMA-basierte Block-Copolymere stabilisiert wurden, gleichzeitig zwei unterschiedliche Wirkstoffe in die Zellen zu bringen, wobei der eine schnell und der zweite über einen längeren Zeitraum hinweg (kontrolliert) freigesetzt werden könnte.rnNeben Nanokapseln sowie –partikeln, die durch inverse bzw. direkte Miniemulsion dargestellt wurden, sind auch Nanohydrogelpartikel untersucht worden, die sich aufgrund von Selbstorganisation eines amphiphilen Bock-Copolymers bildeten. Diese Nanohydrogelpartikel dienten der Komplexierung von siRNA und wurden hinsichtlich ihrer Anreicherung in Lysosomen untersucht. Aufgrund der Knockdown-Studien von Lutz Nuhn konnte ein Unterschied in der Knockdown-Effizienz festgestellt werden, je nach dem, ob 100 nm oder 40 nm große Nanohydrogelpartikel verwendet wurden. Es sollte festgestellt werden, ob eine größenbedingte, unterschiedlich schnelle Anreicherung dieser beiden Partikel in Lysosomen erfolgte, was die unterschiedliche Knockdown-Effizienz erklären könnte. CLSM-Studien und quantitative Kolokalisationsstudien gaben einen ersten Hinweis auf diese Größenabhängigkeit. rnBei allen verwendeten nanopartikulären Systemen konnte eine Freisetzung ihres Inhalts gezeigt werden. Somit bieten sie ein großes Potential als Wirkstoffträger für biomedizinische Anwendungen.rn
Resumo:
Nanodimensionale Wirkstoff-Trägersysteme sind in der Lage, sowohl die Bioverfügbarkeit als auch das pharmakokinetische Profil von Wirkstoffen drastisch zu verbessern. Hauptgründe dafür sind eine erhöhte Plasma-Halbwertszeit durch die größenbedingte verminderte renale Ausscheidung und eine gesteigerte Anreicherung im Tumorgewebe durch den EPR-Effekt. Diese Arbeit beschreibt die Synthese und Entwicklung neuer kolloidaler Wirkstoff-Trägersysteme, welche biokompatibel, teilweise bioabbaubar und funktionalisierbar sind. Ein Fluoreszenzfarbstoff wurde als hydrophobes Wirkstoffmodell eingekapselt. Wohldefinierte, eng verteilte und funktionalisierbare HPMA-basierte Block- und statistische Copolymere unterschiedlicher Molekulargewichte (10-25 kDa) und hydrophiler/hydrophober Zusammensetzung (10-50 mol%) wurden mittels RAFT- Polymerisation in Kombination mit dem Reaktivesteransatz hergestellt und in Miniemulsionsprozesse eingesetzt, um ihre Stabilisierungseffizienz zu untersuchen. Dabei zeigte sich, dass die kleineren Copolymere (10 kDa) mit einem Einbau von 10 mol% LMA, sowohl im Modellsystem Polystyrol, als auch im bioabbaubaren PDLLA-System, besonders geeignet sind und ergaben monodisperse Kolloide im Größenbereich von 100 bis 300 nm. Die kolloidalen Systeme zeigten keine Wirkung auf die Zellviabilität. In Folge dessen wurde das Aggregationsverhalten in humanem Blutserum mittels DLS untersucht, wobei keine Interaktion mit Blutbestandteilen festgestellt werden konnte. Zellaufnahmestudien wurden an HeLa-Zellen durchgeführt, um das Schicksal der Kolloide in vitro zu untersuchen. Dabei wurden Kernmaterial, Hülle und das hydrophobe Wirkstoffmodell durch unterschiedliche Fluoreszenzmarkierung getrennt betrachtet. Das hydrophobe Wirkstoffmodell wurde allein durch Interaktion der Kolloide mit den Zellen übertragen, was für eine diffusionsbedingte, initiale, aber unspezifische Freisetzung spricht. Eine solche Freisetzungskinetik kann durch Verwendung von Nitroglycerin, als vasodilatierender Wirkstoff mit geringer unspezifischer Wirkung, ausgenutzt werden, um den EPR-Effekt zu unterstützen. Die Aufnahme des Partikels hingegen geschieht zeitverzögert. Das Schicksal der Kolloide (sowohl des Kern- und desrnHüllmaterials) wurde durch doppelte Fluoreszenzmarkierung untersucht. Dabei kam es zu einer intrazellulären Ablösung der stabilisierenden Block-Copolymere zwischen 8 und 24 h. Nach Aufklärung der Aufnahme- und Freisetzungskinetiken wurde nun die Körperverteilung der PS- und PDLLA-Kolloide nach 18F-Markierung mittels PET und ex vivo-Biodistributiosstudien untersucht. Dabei hatte das Kernmaterial einen Einfluss auf die Körperverteilung. PET-Studien in Mäusen zeigten, dass die stabilisierenden Block-Copolymere beider Kolloide ein starkes Signal in der Niere geben, wobei das der PS-Kolloide weiter ausgeprägt war. Darüber hinaus war eine Anreicherung dieser in Lunge, Leber und Milz festzustellen. Die Verdrängung der stabilisierenden Polymere durch die Interaktion mit Blutbestandteilen erklärt dabei das erhöhte Nieren- und Blasensignal der PS- Kolloide. Das Anreicherungsmuster der PDLLA-Kolloide hingegen zeigte neben der Nierenakkumulation eine erhöhte Blutaktivität und somit die gewünschten langzirkulierenden Eigenschaften. Diese Ergebnisse konnten auch mittels ex vivo- Biodistributionsstudien bestätigt werden. Um die Tumoranreicherung weiter zu verbessern wurde die Verwendung von Folat als Erkennungsstruktur am einfachen HPMA-Polymer untersucht. Die Konjugate zeigten eine erhöhte Anreicherung im Vergleich zu den Polymeren ohne Erkennungsstrukturen. Blockadestudien bestätigten die Selektivität der Anreicherung. Diese Daten zeigen das Potential der Folat-Erkennungsstruktur in vivo innerhalb kurzer Zeitfenster, welche nun auf kolloidale Systeme übertragen werden kann.
Resumo:
In the current work, three studies about non-aqueous dispersions of particles were carried out by using an amphiphilic block copolymer poly(isoprene)-block-poly(methyl methacrylate) (PI-b-PMMA) as stabilizer:rn1. Dispersions of polyurethane and polyurea porous particles for polymer compositesrn2. Dispersions of PMMA and PU particles with PDI dye for study of Single Molecule Spectroscopy Detectionrn3. Dispersions of graphene nanosheets for polymer compositesrnrnIn the first study, highly porous polyurethane and polyurea particles were prepared in a non-aqueous emulsion. The preparation of porous particles consisted of two parts: At first, a system was developed where the emulsion had high stability for the polymerization among diisocyanate, diol and water. In the second part, porous particles were prepared by using two methods fission/fusion and combination by which highly porous particles were obtained. In this study, the applications of porous particles were also investigated where polyurethane particles were tested as filling material for polymer composites and as catalyst carrier for polyethylene polymerization. rnrnIn the second study, PMMA and PU particles from one non-aqueous emulsion were investigated via single molecule fluorescence detection. At first the particles were loaded with PDI dye, which were detected by fluorescence microscopy. The distribution and orientation of the PDI molecules in the particles were successfully observed by Single Molecule Fluorescence Detection. The molecules were homogenously distributed inside of the particles. In addition they had random orientation, meaning that no aggregations of dye molecules were formed. With the results, it could be supposed that the polymer chains were also homogenously distributed in the particles, and that the conformation was relatively flexible. rnrnIn the third part of the study, graphene nanosheets with high surface area were dispersed in an organic solvent with low boiling point and low toxicity, THF, stabilized with a block copolymer PI-b-PMMA. The dispersion was used to prepare polymer composites. It was shown that the modified graphene nanosheets had good compatibility with the PS and PMMA matrices. rn
Resumo:
Isolation of a faulted segment, from either side of a fault, in a radial feeder that has several converter interfaced DGs is a challenging task when current sensing protective devices are employed. The protective device, even if it senses a downstream fault, may not operate if fault current level is low due to the current limiting operation of converters. In this paper, a new inverse type relay is introduced based on line admittance measurement to protect a distribution network, which has several converter interfaced DGs. The basic operation of this relay, its grading and reach settings are explained. Moreover a method is proposed to compensate the fault resistance such that the relay operation under this condition is reliable. Then designed relay performances are evaluated in a radial distribution network. The results are validated through PSCAD/EMTDC simulation and MATLAB calculations.
Resumo:
The knee forces and moments estimated by inverse dynamics and directly measured by a multiaxial transducer were compared during the gait of a transfemoral amputee. The estimated and directly measured forces and moments were relatively close. However, 3D inverse dynamics estimated only partially the forces and moments associated with the deformation of the prosthetic foot and locking of knee mechanism.
Resumo:
Inverse dynamics is the most comprehensive method that gives access to the net joint forces and moments during walking. However it is based on assumptions (i.e., rigid segments linked by ideal joints) and it is known to be sensitive to the input data (e.g., kinematic derivatives, positions of joint centres and centre of pressure, inertial parameters). Alternatively, transducers can be used to measure directly the load applied on the residuum of transfemoral amputees. So, the purpose of this study was to compare the forces and moments applied on a prosthetic knee measured directly with the ones calculated by three inverse dynamics computations - corresponding to 3 and 2 segments, and « ground reaction vector technique » - during the gait of one patient. The maximum RMSEs between the estimated and directly measured forces (i.e., 56 N) and moment (i.e., 5 N.m) were relatively small. However the dynamic outcomes of the prosthetic components (i.e., absorption of the foot, friction and limit stop of the knee) were only partially assessed with inverse dynamic methods.
Resumo:
The accuracy of data derived from linked-segment models depends on how well the system has been represented. Previous investigations describing the gait of persons with partial foot amputation did not account for the unique anthropometry of the residuum or the inclusion of a prosthesis and footwear in the model and, as such, are likely to have underestimated the magnitude of the peak joint moments and powers. This investigation determined the effect of inaccuracies in the anthropometric input data on the kinetics of gait. Toward this end, a geometric model was developed and validated to estimate body segment parameters of various intact and partial feet. These data were then incorporated into customized linked-segment models, and the kinetic data were compared with that obtained from conventional models. Results indicate that accurate modeling increased the magnitude of the peak hip and knee joint moments and powers during terminal swing. Conventional inverse dynamic models are sufficiently accurate for research questions relating to stance phase. More accurate models that account for the anthropometry of the residuum, prosthesis, and footwear better reflect the work of the hip extensors and knee flexors to decelerate the limb during terminal swing phase.