1000 resultados para Ampa Receptor
Resumo:
Fetal alcohol syndrome (FAS) is the leading cause of mental retardation in western society. We investigated possible changes in glutamate receptor levels in neonatal animals following ethanol exposure using radioligand binding and western blot analysis. We used a vapor chamber to administer ethanol to neonatal Wistar rats 3 h a day from postnatal day (PND) 4-9. A separation control group was separated from their mothers for the same time and duration as the vapor treatment, while a normal control group was left to develop normally. Daily ethanol administrations resulted in decreased brain weight and body weight, as well as microencephaly (decreased brain:body weight ratio). Neither the affinity nor maximum binding of [H-3]MK-801 (dizoclipine maleate) in the cortex of PND10 rats differed between treatment groups. Western blot analysis also failed to reveal any changes in NMDAR1, NMDAR2A, or NMDAR2B receptor levels. In contrast, the AMPA receptor subunit GluR1 was greatly reduced in vapor-treated pups compared with control pups, as revealed by western blot analysis. A similar reduction was found in westerns with an antibody recognizing the GluR2 and 4 subunits. These results indicate that ethanol reduces AMPA rather than NMDA receptors in the developing neocortex, possibly by blocking NMDA receptors during development. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Training in step-down inhibitory avoidance (0.3-mA footshock) is followed by biochemical changes in rat hippocampus that strongly suggest an involvement of quantitative changes in glutamate AMPA receptors, followed by changes in the dopamine D1 receptor/cAMP/protein kinase A (PKA)/CREB-P signalling pathway in memory consolidation. AMPA binding to its receptor and levels of the AMPA receptor-specific subunit GluR1 increase in the hippocampus within the first 3 h after training (20-70%). Binding of the specific D1 receptor ligand, SCH23390, and cAMP levels increase within 3 or 6 h after training (30-100%). PKA activity and CREB-P levels show two peaks: a 35-40% increase 0 h after training, and a second increase 3-6 h later (35-60%). The results correlate with pharmacological findings showing an early post-training involvement of AMPA receptors, and a late involvement of the D1/cAMP/PKA/CREB-P pathway in memory consolidation of this task
Resumo:
The onset of spontaneous seizures triggers a cascade of molecular and cellular events that eventually leads to neuronal injury and cognitive decline. The present study investigated the effect of Withania somnifera (WS) root extract and Withanolide A (WA) in restoring behavioural deficit by inhibiting oxidative stress induced alteration in glutamergic neurotransmission. The subdued performance in behavioural tests shows impaired motor coordination and memory. Histopathological investigations revealed significant neuronal loss in hippocampus of epileptic rats indicating glutamate mediated excitotoxicity. The treatment with WS and WA restored behavioural deficit and ameliorated neuronal loss. An altered redox homeostasis leading to oxidative stress is a hallmark of TLE. The antioxidant potential was afflicted in epileptic rats, evident from altered activity of SOD and CAT, down regulation of SOD and GPX expression and enhanced lipid peroxidation. The antioxidant property of WS and WA restored altered antioxidant capacity. Alteration in GDH activity and down regulation of GLAST expression resulted in enhanced glutamate content in the brain regions. The metabolism of glutamate was altered in the form of down regulated GAD expression. The alteration in synthesis, transport and metabolism resulted in further increase of the glutamate concentration at the synapse leading to glutamate mediated excitotoxicity. The decreased NMDA and AMPA receptor binding and down regulated NMDA R1, NMDA 2B and AMPA (GluR2) mRNA expression indicated altered glutamergic receptor function. The treatment with WS and WA reversed altered glutamergic receptor function, synthesis, transport and metabolism. The enhanced levels of second messenger IP3 responsible for Ca2+ mediated toxicity was reversed after treatment with WS and WA. Neurotoxics concentration of glutamate resulted in up regulation of pro apoptotic factors Bax and Caspase 8 and down regulation of anti apoptotic factor Akt resulting in neuronal death. The treatment with WS and WA resulted in activation of Akt and down regulation of Bax and caspase 8 leading to blocking of apoptotic pathway. The treatment with WS and WA resulted in reduced seizure frequency and amelioration of associated alterations suggesting the therapeutic role of Withania somnifera in temporal lobe epilepsy
Resumo:
The aim of this study was to analyze the plastic effects of moderate exercise upon the motor cortex (M1 and M2 areas), cerebellum (Cb), and striatum (CPu) of the rat brain This assessment was made by verifying the expression of AMPA type glutamate receptor subunits (GluR1 and GluR2/3) We used adult Wistar rats, divided into 5 groups based on duration of exercise training, namely 3 days (EX3), 7 days (EX7) 15 days (EX15) 30 days (EX30), and sedentary (S) The exercised animals were subjected to a treadmill exercise protocol at the speed of the 10 meters/min for 40 mm After exercise, the brains were subjected to immunohistochemistry and immunoblotting to analyze changes of GluR1 and GluR2/3, and plasma cortcosterone was measured by ELISA in order to verify potential stress induced by physical training Overall the results of immunohistochemistry and immunoblotting were similar and revealed that GluR subunits show distinct responses over the exercise periods and for the different structures analyzed In general, there was increased expression of GluR subunits after longer exercise periods (such as EX30) although some opposite effects were seen after short periods of exercise (Ex3) In a few cases biphasic patterns with decreases and subsequent increases of GluR expression were seen and may represent the outcome of exercise dependent, complex regulatory processes The data show that the protocol used was able to promote plastic GluR changes during exercise, suggesting a specific involvement of these receptors in exercise induced plasticity processes in the brain areas tested (C) 2010 Elsevier B V All rights reserved
Resumo:
Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.
Resumo:
Expression of the mRNAs encoding the astrocytic (EAAT1, EAAT2) and neuronal (EAAT3, EAAT4) excitatory amino acid transporters and the AMPA-type glutamate receptor subunits GluR2 and GluR3 was investigated in postmortem cerebellar extracts from a patient with olivopontocerebellar atrophy (OPCA) and in material from three age-matched controls. Decreased expression in the steady state level of EAAT4 mRNA in the OPCA sample was correlated with the selective loss of Purkinje cells. Neuropathological evaluation revealed reactive gliosis and concomitantly increased expression of the mRNA encoding astrocytic glial fibrillary acidic protein (GFAP). Expression of the mRNAs encoding the AMPA receptor subunits GluR2 and GluR3 subunits was found to be decreased in OPCA suggesting that excitotoxic mechanism could play a role in the pathogenesis of the selective neuronal cell death in this disorder.
Resumo:
Recent reports have suggested that proper maturation of synapses in the hippocampus requires activation of NMDA receptors. We previously demonstrated that neonatal ethanol exposure results in a lasting reduction in synaptic strength in the hippocampus. To determine if this reduction was due to ethanol's effects on NMDA receptors, we investigated long-term changes in synaptic properties resulting from administration of NMDA receptor antagonists to neonatal animals. Rats were injected daily from PND 4-9 with either the noncompetitive NMDA receptor antagonist MK-801, the competitive NMDA receptor antagonist CPP, or the AMPA receptor antagonist NBQX. Control rats were either injected daily with physiological saline during the same period or left to develop normally. Hippocampal slices were prepared from nembutal-anesthetized animals between PND 35 and PND 40. The maximum pEPSP and PS values were not significantly different between controls and NMDA antagonist-treated animals. However, slices from animals injected with NMDA receptor antagonists required higher stimulus currents to attain comparable pEPSPs. The ratio of the slope of the pEPSP to the amplitude of the presynaptic volley was also reduced, as were pEPSP responses to specific stimulus currents. None of these effects were observed in slices prepared from animals treated with the AMPA receptor antagonist NBQX. Glutamate receptor antagonism did not produce lasting changes in long-term potentiation or paired-pulse facilitation. These results indicate activation of NMDA receptors during development is necessary for proper development of synapses. (C) 2001 Wiley-Liss, Inc.
Resumo:
MCT2 is the major neuronal monocarboxylate transporter (MCT) that allows the supply of alternative energy substrates such as lactate to neurons. Recent evidence obtained by electron microscopy has demonstrated that MCT2, like alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) receptors, is localized in dendritic spines of glutamatergic synapses. Using immunofluorescence, we show in this study that MCT2 colocalizes extensively with GluR2/3 subunits of AMPA receptors in neurons from various mouse brain regions as well as in cultured neurons. It also colocalizes with GluR2/3-interacting proteins, such as C-kinase-interacting protein 1, glutamate receptor-interacting protein 1 and clathrin adaptor protein. Coimmunoprecipitation of MCT2 with GluR2/3 and C-kinase-interacting protein 1 suggests their close interaction within spines. Parallel changes in the localization of both MCT2 and GluR2/3 subunits at and beneath the plasma membrane upon various stimulation paradigms were unraveled using an original immunocytochemical and transfection approach combined with three-dimensional image reconstruction. Cell culture incubation with AMPA or insulin triggered a marked intracellular accumulation of both MCT2 and GluR2/3, whereas both tumor necrosis factor alpha and glycine (with glutamate) increased their cell surface immunolabeling. Similar results were obtained using Western blots performed on membrane or cytoplasm-enriched cell fractions. Finally, an enhanced lactate flux into neurons was demonstrated after MCT2 translocation on the cell surface. These observations provide unequivocal evidence that MCT2 is linked to AMPA receptor GluR2/3 subunits and undergoes a similar translocation process in neurons upon activation. MCT2 emerges as a novel component of the synaptic machinery putatively linking neuroenergetics to synaptic transmission.
Resumo:
The present study was designed to investigate the protective effect of curcumin and vitamin D3 in the functional regulation of glutamatergic NMDA and AMPA receptors in streptozotocin (STZ) induced diabetic rats. Alterations in glutamatergic neurotransmission in the brain were evaluated by analyzing the glutamate content, glutamate receptors - NMDA and AMPA receptors binding parameters and gene expression, GAD and GLAST gene expression. Immunohistochemistry studies using confocal microscope were carried out to confirm receptor density and gene expression results of NMDA and AMPA receptors. The role of glutamatergic receptors in pancreas was studied using the following parameters; glutamate content, GLAST expression, glutamate receptors - NMDA and AMPA receptor binding and gene expression. Increasing evidence in both experimental and clinical studies suggests that oxidative stress plays a major role in the pathogenesis of diabetes. In the present study SOD assay and GPx gene expression were done to evaluate the activity of antioxidant enzymes in the brain regions and pancreas. NeuroD1 and Pdx1 gene expression were performed in pancreas of experimental rats to evaluate pancreatic islet survival. Gene expression profiles of caspase 8, Bax, and Akt in brain regions and pancreas were studied to understand the possible mechanism behind curcumin and vitamin D3 mediated neuroprotection and islet survival. Gene expression studies of vitamin D3 receptor localisation in the pancreas was done to understand the mechanism of vitamin D3 in insulin secretion. Curcumin and vitamin D3 mediated insulin secretion via Ca2+ release were studied using confocal microscope.
Resumo:
Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca2+, resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 min OGD protocol, a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by metabotropic glutamate receptor 1 (mGluR1) or A3 receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC, or chelation of intracellular Ca2+ also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalization of AMPARs after OGD. We also show that a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A3 receptor antagonists, indicating that AMPARs are degraded following internalization. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection
Resumo:
In cultured oligodendrocytes isolated from perinatal rat optic nerves, we have analyzed the expression of ionotropic glutamate receptor subunits as well as the effect of the activation of these receptors on oligodendrocyte viability. Reverse transcription–PCR, in combination with immunocytochemistry, demonstrated that most oligodendrocytes differentiated in vitro express the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR3 and GluR4 and the kainate receptor subunits GluR6, GluR7, KA1 and KA2. Acute and chronic exposure to kainate caused extensive oligodendrocyte death in culture. This effect was partially prevented by the AMPA receptor antagonist GYKI 52466 and was completely abolished by the non-N-methyl-d-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), suggesting that both AMPA and kainate receptors mediate the observed kainate toxicity. Furthermore, chronic application of kainate to optic nerves in vivo resulted in massive oligodendrocyte death which, as in vitro, could be prevented by coinfusion of the toxin with CNQX. These findings suggest that excessive activation of the ionotropic glutamate receptors expressed by oligodendrocytes may act as a negative regulator of the size of this cell population.
Resumo:
Kainate (KA) receptor activation depresses stimulus-evoked γ-aminobutyric acid (GABA-mediated) synaptic transmission onto CA1 pyramidal cells of the hippocampus and simultaneously increases the frequency of spontaneous GABA release through an increase in interneuronal spiking. To determine whether these two effects are independent, we examined the mechanism by which KA receptor activation depresses the stimulus-evoked, inhibitory postsynaptic current (IPSC). Bath application of the α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA)/KA receptor agonist KA in the presence of the AMPA receptor antagonist GYKI 53655 caused a large increase in spontaneous GABA release and a coincident depression of the evoked IPSC. The depressant action on the evoked IPSC was reduced, but not abolished, by the GABAB receptor antagonist SCH 50911, suggesting that the KA-induced increase in spontaneous GABA release depresses the evoked IPSC through activation of presynaptic GABAB receptors. KA had no resolvable effect on the potassium-induced increase in miniature IPSC frequency, suggesting that KA does not act through a direct effect on the release machinery or presynaptic calcium influx. KA caused a decrease in pyramidal cell input resistance, which was reduced by GABAA receptor antagonists. KA also caused a reduction in the size of responses to iontophoretically applied GABA, which was indistinguishable from the SCH 50911-resistant, residual depression of the evoked IPSC. These results suggest that KA receptor activation depresses the evoked IPSC indirectly by increasing interneuronal spiking and GABA release, leading to activation of presynaptic GABAB receptors, which depress GABA release, and postsynaptic GABAA receptors, which increase passive shunting.
Resumo:
Transient global ischemia induces selective delayed cell death, primarily of principal neurons in the hippocampal CA1. However, the molecular mechanisms underlying ischemia-induced cell death are as yet unclear. The present study shows that global ischemia triggers a pronounced and cell-specific reduction in GluR2 [the subunit that limits Ca2+ permeability of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors] in vulnerable CA1 neurons, as evidenced by immunofluorescence of brain sections and Western blot analysis of microdissected hippocampal subfields. At 72 h after ischemia (a time before cell death), virtually all CA1 pyramidal neurons exhibited greatly reduced GluR2 immunolabeling throughout their somata and dendritic processes. GluR2 immunolabeling was unchanged in pyramidal cells of the CA3 and granule cells of the dentate gyrus, regions resistant to ischemia-induced damage. Immunolabeling of the AMPA receptor subunit GluR1 was unchanged in CA1, CA3, and dentate gyrus. Western analysis indicated that GluR2 subunit abundance was markedly reduced in CA1 at 60 and 72 h after the ischemic insult; GluR1 abundance was unchanged in all subfields at all times examined. These findings, together with the previous observation of enhanced AMPA-elicited Ca2+ influx in postischemic CA1 neurons, show that functional GluR2-lacking, Ca2+-permeable AMPA receptors are expressed in vulnerable neurons before cell death. Thus, the present study provides an important link in the postulated causal chain between global ischemia and delayed death of CA1 pyramidal neurons.
Resumo:
Stroke and head trauma are worldwide public health problems and leading causes of death and disability in humans, yet, no adequate neuroprotective treatment is available for therapy. Glutamate antagonists are considered major drug candidates for neuroprotection in stroke and trauma. However, N-methyl-d-aspartate antagonists failed clinical trials because of unacceptable side effects and short therapeutic time window. α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) antagonists derived from the quinoxalinedione scaffold cannot be used in humans because of their insolubility and resulting renal toxicity. Therefore, achieving water solubility of quinoxalinediones without loss of selectivity and potency profiles becomes a major challenge for medicinal chemistry. One of the major tenets in the chemistry of glutamate antagonists is that the incorporation of phosphonate into the glutamate framework results in preferential N-methyl-d-aspartate antagonism. Therefore, synthesis of phosphonate derivatives of quinoxalinediones was not pursued because of a predicted loss of their selectivity toward AMPA. Here, we report that introduction of a methylphosphonate group into the quinoxalinedione skeleton leaves potency as AMPA antagonists and selectivity for the AMPA receptor unchanged and dramatically improves solubility. One such novel phosphonate quinoxalinedione derivative and competitive AMPA antagonist ZK200775 exhibited a surprisingly long therapeutic time window of >4 h after permanent occlusion of the middle cerebral artery in rats and was devoid of renal toxicity. Furthermore, delayed treatment with ZK200775 commencing 2 h after onset of reperfusion in transient middle cerebral artery occlusion resulted in a dramatic reduction of the infarct size. ZK200775 alleviated also both cortical and hippocampal damage induced by head trauma in the rat. These observations suggest that phosphonate quinoxalinedione-based AMPA antagonists may offer new prospects for treatment of stroke and trauma in humans.
Resumo:
Protracted administration of diazepam elicits tolerance, whereas discontinuation of treatment results in signs of dependence. Tolerance to the anticonvulsant action of diazepam is present in an early phase (6, 24, and 36 h) but disappears in a late phase (72–96 h) of withdrawal. In contrast, signs of dependence such as decrease in open-arm entries on an elevated plus-maze and increased susceptibility to pentylenetetrazol-induced seizures were apparent 96 h (but not 12, 24, or 48 h) after diazepam withdrawal. During the first 72 h of withdrawal, tolerance is associated with changes in the expression of GABAA (γ-aminobutyric acid type A) receptor subunits (decrease in γ2 and α1; increase in α5) and with an increase of mRNA expression of the most abundant form of glutamic acid decarboxylase (GAD), GAD67. In contrast, dl-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor GluR1 subunit mRNA and cognate protein, which are normal during the early phase of diazepam withdrawal, increase by approximately 30% in cortex and hippocampus in association with the appearance of signs of dependence 96 h after diazepam withdrawal. Immunohistochemical studies of GluR1 subunit expression with gold-immunolabeling technique reveal that the increase of GluR1 subunit protein is localized to layer V pyramidal neurons and their apical dendrites in the cortex, and to pyramidal neurons and in their dendritic fields in hippocampus. The results suggest an involvement of GABA-mediated processes in the development and maintenance of tolerance to diazepam, whereas excitatory amino acid-related processes (presumably via AMPA receptors) may be involved in the expression of signs of dependence after withdrawal.