981 resultados para Amorphous silicon thin film


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin film transistors (TFTs) utilizing an hydrogenated amorphous silicon (a-Si:H) channel layer exhibit a shift in the threshold voltage with time under the application of a gate bias voltage due to the creation of metastable defects. These defects are removed by annealing the device with zero gate bias applied. The defect removal process can be characterized by a thermalization energy which is, in turn, dependent upon an attempt-to-escape frequency for defect removal. The threshold voltage of both hydrogenated and deuterated amorphous silicon (a-Si:D) TFTs has been measured as a function of annealing time and temperature. Using a molecular dynamics simulation of hydrogen and deuterium in a silicon network in the H2 * configuration, it is shown that the experimental results are consistent with an attempt-to-escape frequency of (4.4 ± 0.3) × 1013 Hz and (5.7 ± 0.3) × 1013 Hz for a-Si:H and a-Si:D respectively which is attributed to the oscillation of the Si-H and Si-D bonds. Using this approach, it becomes possible to describe defect removal in hydrogenated and deuterated material by the thermalization energies of (1.552 ± 0.003) eV and (1.559 ± 0.003) eV respectively. This correlates with the energy per atom of the Si-H and Si-D bonds. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronic systems are a very good platform for sensing biological signals for fast point-of-care diagnostics or threat detection. One of the solutions is the lab-on-a-chip integrated circuit (IC), which is low cost and high reliability, offering the possibility for label-free detection. In recent years, similar integrated biosensors based on the conventional complementary metal oxide semiconductor (CMOS) technology have been reported. However, post-fabrication processes are essential for all classes of CMOS biochips, requiring biocompatible electrode deposition and circuit encapsulation. In this work, we present an amorphous silicon (a-Si) thin film transistor (TFT) array based sensing approach, which greatly simplifies the fabrication procedures and even decreases the cost of the biosensor. The device contains several identical sensor pixels with amplifiers to boost the sensitivity. Ring oscillator and logic circuits are also integrated to achieve different measurement methodologies, including electro-analytical methods such as amperometric and cyclic voltammetric modes. The system also supports different operational modes. For example, depending on the required detection arrangement, a sample droplet could be placed on the sensing pads or the device could be immersed into the sample solution for real time in-situ measurement. The entire system is designed and fabricated using a low temperature TFT process that is compatible to plastic substrates. No additional processing is required prior to biological measurement. A Cr/Au double layer is used for the biological-electronic interface. The success of the TFT-based system used in this work will open new avenues for flexible label-free or low-cost disposable biosensors. © 2013 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical properties of thin films such as residual stress and hardness are of paramount importance from the device fabrication point of view. Intrinsic stress in sputtered films can be tensile or compressive as decided by the number density and the energy of the plasma species striking the growing film. In the presence of hydrogen we analyzed the applicability of idealized stress reversal curve for amorphous silicon thin films deposited by DC, pulsed DC (PDC) and RF sputtering. We are successfully able to correlate the microstructure with the stress reversal and hardness. We observed a stress reversal from compressive to tensile with hydrogen incorporation. It was found that unlike in idealized stress reversal curve case, though the energy of plasma species is less in DC plasma, DC deposited films exhibit more compressive stress, followed by PDC and RF deposited films. A tendency towards tensile stress from compressive stress was observed at similar to 13, 18 and 23 at%H for DC, PDC and RF deposited films respectively, which is in exact agreement with the vacancy to void transition in the films. Regardless of the sputtering power mode, the hardness of a-Si:H films is found to be maximum at C-H similar to 10 at%H. Enhancement in hardness with C-H (up to C-H similar to 10 at%H) is attributed to increase of Si-H bonds. Beyond C-H similar to 10 at%H, hardness starts falling. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of laser fluence on the crystallization of amorphous silicon irradiated by a frequency-doubled Nd:YAG laser is studied both theoretically and experimentally. An effective numerical model is set up to predict the melting threshold and the optimized laser fluence for the crystallization of 200-nm-thick amorphous silicon. The variation of the temperature distribution with time and the melt depth is analyzed. Besides the model, the Raman spectra of thin films treated with different fluences are measured to confirm the phase transition and to determine the optimized fluence. The calculating results accord well with those obtained from the experimental data in this research. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper will review the different U. V. lamp photo-CVD (Chemical Vapor Deposition) techniques which have been utilized for the production of highly photoconductive hydrogenated amorphous silicon (a-Si:H) thin films. Most of these require the transmission of U. V. light through a window into the reaction vessel; leading to unwanted U. V. light absorption by the window and the a-Si:H film which tends to form on its inner surface. A deposition system developed in our laboratory will also be described, which circumvents these problems by incorporating a windowless discharge lamp into the reaction vessel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymorphous silicon (pm-Si:H) films have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the pm-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. There are a blue shift for the stretching mode of IR spectra and a red shift for the wagging mode. The shifts are attributed to the variation of the microstructure. By using pm-Si:H film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100mw/cm(2)) at room temperature (T-R).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The erbium-doped hydrogenated amorphous silicon suboxide films containing amorphous silicon clusters were prepared. The samples exhibited photoluminescence peaks at around 750 nm and 1.54 mum, which could be assigned to the electron-hole recombination in amorphous silicon clusters and the intra-4f transition in Er3+, respectively. Correlations between the intensities of these two photoluminescence peaks and oxidation and dehydrogenation of the films during annealing were studied. It was found that the oxidation is triggered by dehydrogenation of the films even at low annealing temperatures, which decisively changes the intensities of the two photoluminescence peaks. On the other hand, the increase of Er content in the erbium-doped hydrogenated amorphous silicon suboxide film will enhance Er3+ emission at 1.54 mum, while quench amorphous silicon cluster emission at 750 nm, such a competitive relationship, was also observed in the erbium-doped silicon nanocrystals embedded in SiO2 matrix. Moreover, we found that Er3+ emission is not sensitive to whether silicon clusters are crystalline or amorphous. The amorphous silicon clusters can be as sensitizer on Er3+ emission as that of silicon nanocrystals. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymorphous silicon (pm-Si:H) films have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the pm-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. There are a blue shift for the stretching mode of IR spectra and a red shift for the wagging mode. The shifts are attributed to the variation of the microstructure. By using pm-Si:H film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100mw/cm(2)) at room temperature (T-R).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A polycrystalline silicon thin film was fabricated on glass substrate by means of aluminum induced crystallization (AIC). Al and alpha-Si layers were deposited by magnetron sputtering respectively and annealed at 480A degrees C for 1 h to realize layer exchange. The polycrystalline silicon thin film was continuous and strongly (111) oriented. By analyzing the structure variation of the oxidation membrane and lattice mismatch between gamma-Al2O3 and Si, it was concluded that aluminum promoted the formation of (111) oriented silicon nucleus by controlling the orientation of gamma-Al2O3, which was formed at the early stage of annealing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A brief account of the several methods used for the production of thin films is presented in this Chapter. The discussions stress on the important methods used for the fabrication of a-si:H thin films. This review' also reveals ‘that almost all the general methods, like vacuum evaporation, sputtering, glow discharge and even chemical methods are currently employed for the production of a-Si:H thin films. Each method has its own advantages and disadvantages. However, certain methods are generally preferred. Subsequently a detailed account of the method used here for the preparation of amorphous silicon thin films and their hydrogenation is presented. The metal chamber used for the electrical and dielectric measurements is also described. A brief mention is made-on the electrode structure, film area and film geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical switching behavior of amorphous Al23Te77 thin film devices, deposited by flash evaporation, has been studied in co-planar geometry. It is found that these samples exhibit memory type electrical switching. Scanning Electron Microscopic studies show the formation of a crystalline filament in the electrode region which is responsible for switching of the device from high resistance OFF state to low resistance ON state. It is also found that the switching behavior of thin film Al-Te samples is similar to that of bulk samples, with the threshold fields of bulk samples being higher. This has been understood on the basis of higher thermal conductance in bulk, which reduces the Joule heating and temperature rise in the electrode region. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourier Transform Infrared (FTIR) spectroscopic analysis has been carried out on the hydrogenated amorphous silicon (a-Si:H) thin films deposited by DC, pulsed DC (PDC) and RF sputtering process to get insight regarding the total hydrogen concentration (C-H) in the films, configuration of hydrogen bonding, density of the films (decided by the vacancy and void incorporation) and the microstructure factor (R*) which varies with the type of sputtering carried out at the same processing conditions. The hydrogen incorporation is found to be more in RF sputter deposited films as compared to PDC and DC sputter deposited films. All the films were broadly divided into two regions namely vacancy dominated and void dominated regions. At low hydrogen dilutions the films are vacancy dominated and at high hydrogen dilutions they are void dominated. This demarcation is at C-H = 23 at.% H for RF, C-H = 18 at.% H for PDC and C-H = 14 at.% H for DC sputter deposited films. The microstructure structure factor R* is found to be as low as 0.029 for DC sputter deposited films at low C-H. For a given C-H, DC sputter deposited films have low R* as compared to PDC and RF sputter deposited films. Signature of dihydride incorporation is found to be more in DC sputter deposited films at low C-H.