975 resultados para Amino-acid-sequence
Resumo:
We present a method for predicting protein folding class based on global protein chain description and a voting process. Selection of the best descriptors was achieved by a computer-simulated neural network trained on a data base consisting of 83 folding classes. Protein-chain descriptors include overall composition, transition, and distribution of amino acid attributes, such as relative hydrophobicity, predicted secondary structure, and predicted solvent exposure. Cross-validation testing was performed on 15 of the largest classes. The test shows that proteins were assigned to the correct class (correct positive prediction) with an average accuracy of 71.7%, whereas the inverse prediction of proteins as not belonging to a particular class (correct negative prediction) was 90-95% accurate. When tested on 254 structures used in this study, the top two predictions contained the correct class in 91% of the cases.
Resumo:
Background: Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of C-beta atoms in other residues within a sphere around the C-beta atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence. Results: We predict contact number from protein sequence using a novel support vector regression algorithm. Using protein local sequences with multiple sequence alignments (PSI-BLAST profiles), we demonstrate a correlation coefficient between predicted and observed contact numbers of 0.70, which outperforms previously achieved accuracies. Including additional information about sequence weight and amino acid composition further improves prediction accuracies significantly with the correlation coefficient reaching 0.73. If residues are classified as being either contacted or non-contacted, the prediction accuracies are all greater than 77%, regardless of the choice of classification thresholds. Conclusion: The successful application of support vector regression to the prediction of protein contact number reported here, together with previous applications of this approach to the prediction of protein accessible surface area and B-factor profile, suggests that a support vector regression approach may be very useful for determining the structure-function relation between primary sequence and higher order consecutive protein structural and functional properties.
Resumo:
Background: Designing novel proteins with site-directed recombination has enormous prospects. By locating effective recombination sites for swapping sequence parts, the probability that hybrid sequences have the desired properties is increased dramatically. The prohibitive requirements for applying current tools led us to investigate machine learning to assist in finding useful recombination sites from amino acid sequence alone. Results: We present STAR, Site Targeted Amino acid Recombination predictor, which produces a score indicating the structural disruption caused by recombination, for each position in an amino acid sequence. Example predictions contrasted with those of alternative tools, illustrate STAR'S utility to assist in determining useful recombination sites. Overall, the correlation coefficient between the output of the experimentally validated protein design algorithm SCHEMA and the prediction of STAR is very high (0.89). Conclusion: STAR allows the user to explore useful recombination sites in amino acid sequences with unknown structure and unknown evolutionary origin. The predictor service is available from http://pprowler.itee.uq.edu.au/star.
Resumo:
L-Amino acid oxidases (LAAOs, EC 1.4.3.2) are flavoenzymes that catalyze the stereospecific oxidative deamination of an L-amino acid substrate to the corresponding a-ketoacid with hydrogen peroxide and ammonia production. The present work describes the first report on the antiviral (Dengue virus) and antiprotozoal (trypanocidal and leishmanicide) activities of a Bothrops jararaca L-amino acid oxidase (BjarLAAO-I) and identify its cDNA sequence. Antiparasite effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Cells infected with DENV-3 virus previously treated with BjarLAAO-I, showed a decrease in viral titer (13-83-fold) when compared with cells infected with untreated viruses. Untreated and treated promastigotes (T. cruzi and L. amazonensis) were observed by transmission electron microscopy with different degrees of damage. Its complete cDNA sequence, with 1452 bp, encoded an open reading frame of 484 amino acid residues with a theoretical molecular weight and pl of 54,771.8 and 5.7, respectively. The cDNA-deduced amino acid sequence of BjarLAAO shows high identity to LAAOs from other snake venoms. Further investigations will be focused on the related molecular and functional correlation of these enzymes. Such a study should provide valuable information for the therapeutic development of new generations of microbicidal drugs. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Amino acid insertions in the protease have rarely been described in HIVinfected patients. One of these insertions has recently been described in codon 35, although its impact on resistance remains unknown. This study presents a case of an HIV variant with an insertion in codon 35 of the protease, described for the first time in Bauru, State of Sao Paulo, Brazil, circulating in a 38-year-old caucasian male with asymptomatic HIV infection since 1997. The variant isolated showed a codon 35 insertion of two amino acids in the protease: a threonine and an aspartic acid, resulting in the amino acid sequence E35E_TD.
Resumo:
Inserções de aminoácidos na protease têm sido raramente descritas em pacientes infectados pelo HIV. Uma destas inserções foi, recentemente, descrita no codon 35, embora seu impacto na resistência mantém-se pouco conhecido. Este trabalho apresenta um caso de uma variante viral com inserção no codon 35 da protease, descrita pela primeira vez em Bauru, São Paulo, Brasil, circulante em um homem, caucasiano, com 38 anos, o qual apresenta infecção assintomática pelo HIV desde 1997. A variante isolada mostrou uma inserção no codon 35 da protease de dois aminoácidos: uma treonina e um ácido aspártico, resultando na sequência de aminoácidos E35E_TD.
Resumo:
The aim of this work was to investigate the involvement of caspases in apoptosis induced by L-amino acid oxidase isolated from Bothrops atrox snake venom. The isolation of LAAO involved three chromatographic steps: molecular exclusion on a G-75 column; ion exchange column by HPLC and affinity chromatography on a Lentil Lectin column. SDS-PAGE was used to confirm the expected high purity level of BatroxLAA0. It is a glycoprotein with 12% sugar and an acidic character, as confirmed by its amino acid composition, rich in ""Asp and Glu"" residues. It displays high specificity toward hydrophobic L-amino acids. The N-terminal amino acid sequence and internal peptide sequences showed close structural homology to other snake venom LAAOs. This enzyme induces in vitro platelet aggregation, which may be due to H(2)O(2) production by LAAOs, since the addition of catalase completely inhibited the aggregation effect. It also showed cytotoxicity towards several cancer cell lines: HL60, Jurkat, B16F10 and PC12. The cytotoxicity activity was abolished by catalase. A fluorescence microscopy evaluation revealed a significant increase in the apoptotic index of these cells after BatroxLAAO treatment. This observation was confirmed by phosphatidyl serine exposure and activation of caspases. BatroxLAAO is a protein with various biological functions that can be involved in envenomation. Further investigations of its function will contribute to toxicology advances. Published by Elsevier Inc.
Resumo:
Sequences from the tuf gene coding for the elongation factor EF-Tu were amplified and sequenced from the genomic DNA of Pirellula marina and Isosphaera pallida, two species of bacteria within the order Planctomycetales. A near-complete (1140-bp) sequence was obtained from Pi. marina and a partial (759-bp) sequence was obtained for I. pallida. Alignment of the deduced Pi. marina EF-Tu amino acid sequence against reference sequences demonstrated the presence of a unique Il-amino acid sequence motif not present in any other division of the domain Bacteria. Pi. marina shared the highest percentage amino acid sequence identity with I. pallida but showed only a low percentage identity with other members of the domain Bacteria. This is consistent with the concept of the planctomycetes as a unique division of the Bacteria. Neither primary sequence comparison of EF-Tu nor phylogenetic analysis supports any close relationship between planctomycetes and the chlamydiae, which has previously been postulated on the basis of 16S rRNA. Phylogenetic analysis of aligned EF-Tu amino acid sequences performed using distance, maximum-parsimony, and maximum likelihood approaches yielded contradictory results with respect to the position of planctomycetes relative to other bacteria, It is hypothesized that long-branch attraction effects due to unequal evolutionary rates and mutational saturation effects may account for some of the contradictions.
Resumo:
The proteasome plays a crucial role in the proteolytic processing of antigens presented to T cells in the context of major histocompatibility complex class I molecules. However, the rules governing the specificity of cleavage sites are still largely unknown. We have previously shown that a cytolytic T lymphocyte-defined antigenic peptide derived from the MAGE-3 tumor-associated antigen (MAGE-3(271-279), FLWGPRALV in one-letter code) is not presented at the surface of melanoma cell lines expressing the MAGE-3 protein. By using purified proteasome and MAGE-3(271-279) peptides extended at the C terminus by 6 amino acids, we identified predominant cleavages after residues 278 and 280 but no detectable cleavage after residue Val(279), the C terminus of the antigenic peptide. In the present study, we have investigated the influence of Pro(275), Leu(278), and Glu(280) on the proteasomal digestion of MAGE-3(271-285) substituted at these positions. We show that positions 278 and 280 are major proteasomal cleavage sites because they tolerate most amino acid substitutions. In contrast, the peptide bond after Val(279) is a minor cleavage site, influenced by both distal and proximal amino acid residues.
Resumo:
The four dominant outer membrane proteins (46, 38, 33 and 28 kDa) were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in a semi-purified preparation of vesicle membranes of a Neisseria meningitidis (N44/89, B:4:P1.15:P5.5,7) strain isolated in Brazil. The N-terminal amino acid sequence for the 46 kDa and 28 kDa proteins matched that reported by others for class 1 and 5 proteins respectively, whereas the sequence (25 amino acids) for the 38 kDa (class 3) protein was similar to class 1 meningococcal proteins. The sequence for the 33 kDa (class 4) was unique and not homologous to any known protein.
Resumo:
This report describes a partial amino acid sequences from three putative outer envelope proteins from Leptospira serovar pomona. In order to obtain internal fragments for protein sequencing, enzymatic and chemical digestion was performed. The enzyme clostripain was used to digest the proteins 32 and 45 kDa. In situ digestion of 40 kDa molecular weight protein was accomplished using cyanogen bromide. The 32 kDa protein generated two fragments, one of 21 kDa and another of 10 kDa that yielded five residues. A fragment of 24 kDa that yielded nineteen residues of amino acids was obtained from 45 kDa protein. A fragment with a molecular weight of 20 kDa, yielding a twenty amino acids sequence from the 40 kDa protein.
Resumo:
We designed a trap system to isolate different amino acid sequences which could target proteins to the cell surface via GPI anchor transfer. This selection procedure is based on the insertion of various sequences which regenerate a functional GPI anchor signal sequence and therefore provoke re-expression at the surface of a reporter molecule. Using this trap for cell surface targeting sequences, we could show the importance of the defined elements essential for GPI anchor addition. Such a system could be used for an exhaustive analysis of the carboxyl terminus structural requirements for GPI membrane anchoring.
Resumo:
The amiloride-sensitive epithelial Na channel (ENaC) is a heteromultimeric channel made of three alpha beta gamma subunits. The structures involved in the ion permeation pathway have only been partially identified, and the respective contributions of each subunit in the formation of the conduction pore has not yet been established. Using a site-directed mutagenesis approach, we have identified in a short segment preceding the second membrane-spanning domain (the pre-M2 segment) amino acid residues involved in ion permeation and critical for channel block by amiloride. Cys substitutions of Gly residues in beta and gamma subunits at position beta G525 and gamma G537 increased the apparent inhibitory constant (Ki) for amiloride by > 1,000-fold and decreased channel unitary current without affecting ion selectivity. The corresponding mutation S583 to C in the alpha subunit increased amiloride Ki by 20-fold, without changing channel conducting properties. Coexpression of these mutated alpha beta gamma subunits resulted in a non-conducting channel expressed at the cell surface. Finally, these Cys substitutions increased channel affinity for block by external Zn2+ ions, in particular the alpha S583C mutant showing a Ki for Zn2+ of 29 microM. Mutations of residues alpha W582L, or beta G522D also increased amiloride Ki, the later mutation generating a Ca2+ blocking site located 15% within the membrane electric field. These experiments provide strong evidence that alpha beta gamma ENaCs are pore-forming subunits involved in ion permeation through the channel. The pre-M2 segment of alpha beta gamma subunits may form a pore loop structure at the extracellular face of the channel, where amiloride binds within the channel lumen. We propose that amiloride interacts with Na+ ions at an external Na+ binding site preventing ion permeation through the channel pore.
Resumo:
Single amino acid substitution is the type of protein alteration most related to human diseases. Current studies seek primarily to distinguish neutral mutations from harmful ones. Very few methods offer an explanation of the final prediction result in terms of the probable structural or functional effect on the protein. In this study, we describe the use of three novel parameters to identify experimentally-verified critical residues of the TP53 protein (p53). The first two parameters make use of a surface clustering method to calculate the protein surface area of highly conserved regions or regions with high nonlocal atomic interaction energy (ANOLEA) score. These parameters help identify important functional regions on the surface of a protein. The last parameter involves the use of a new method for pseudobinding free-energy estimation to specifically probe the importance of residue side-chains to the stability of protein fold. A decision tree was designed to optimally combine these three parameters. The result was compared to the functional data stored in the International Agency for Research on Cancer (IARC) TP53 mutation database. The final prediction achieved a prediction accuracy of 70% and a Matthews correlation coefficient of 0.45. It also showed a high specificity of 91.8%. Mutations in the 85 correctly identified important residues represented 81.7% of the total mutations recorded in the database. In addition, the method was able to correctly assign a probable functional or structural role to the residues. Such information could be critical for the interpretation and prediction of the effect of missense mutations, as it not only provided the fundamental explanation of the observed effect, but also helped design the most appropriate laboratory experiment to verify the prediction results.