996 resultados para Ambient control
Resumo:
The present work examines the relationship between pH-induced changes in growth and stable isotopic composition of coccolith calcite in two coccolithophore species with a geological perspective. These cells (Gephyrocapsa oceanica and Coccolithus pelagicus) with differing physiologies and vital effects possess a growth optimum corresponding to average pH of surface seawater in the geological period during their first known occurrence. Diminished growth rates outside of their optimum pH range are explained by the challenge of proton translocation into the extracellular environment at low pH, and enhanced aqueous CO2 limitation at high pH. These diminished growth rates correspond to a lower degree of oxygen isotopic disequilibrium in G. oceanica. In contrast, the slower growing and ancient species C. pelagicus, which typically precipitates near-equilibrium calcite, does not show any modulation of oxygen isotope signals with changing pH. In CO2-utilizing unicellular algae, carbon and oxygen isotope compositions are best explained by the degree of utilization of the internal dissolved inorganic carbon (DIC) pool and the dynamics of isotopic re-equilibration inside the cell. Thus, the "carbonate ion effect" may not apply to coccolithophores. This difference with foraminifera can be traced to different modes of DIC incorporation into these two distinct biomineralizing organisms. From a geological perspective, these findings have implications for refining the use of oxygen isotopes to infer more reliable sea surface temperatures (SSTs) from fossil carbonates, and contribute to a better understanding of how climate-relevant parameters are recorded in the sedimentary archive.
Resumo:
A forced landing is an unscheduled event in flight requiring an emergency landing, and is most commonly attributed to engine failure, failure of avionics or adverse weather. Since the ability to conduct a successful forced landing is the primary indicator for safety in the aviation industry, automating this capability for unmanned aerial vehicles (UAVs) will help facilitate their integration into, and subsequent routine operations over civilian airspace. Currently, there is no commercial system available to perform this task; however, a team at the Australian Research Centre for Aerospace Automation (ARCAA) is working towards developing such an automated forced landing system. This system, codenamed Flight Guardian, will operate onboard the aircraft and use machine vision for site identification, artificial intelligence for data assessment and evaluation, and path planning, guidance and control techniques to actualize the landing. This thesis focuses on research specific to the third category, and presents the design, testing and evaluation of a Trajectory Generation and Guidance System (TGGS) that navigates the aircraft to land at a chosen site, following an engine failure. Firstly, two algorithms are developed that adapts manned aircraft forced landing techniques to suit the UAV planning problem. Algorithm 1 allows the UAV to select a route (from a library) based on a fixed glide range and the ambient wind conditions, while Algorithm 2 uses a series of adjustable waypoints to cater for changing winds. A comparison of both algorithms in over 200 simulated forced landings found that using Algorithm 2, twice as many landings were within the designated area, with an average lateral miss distance of 200 m at the aimpoint. These results present a baseline for further refinements to the planning algorithms. A significant contribution is seen in the design of the 3-D Dubins Curves planning algorithm, which extends the elementary concepts underlying 2-D Dubins paths to account for powerless flight in three dimensions. This has also resulted in the development of new methods in testing for path traversability, in losing excess altitude, and in the actual path formation to ensure aircraft stability. Simulations using this algorithm have demonstrated lateral and vertical miss distances of under 20 m at the approach point, in wind speeds of up to 9 m/s. This is greater than a tenfold improvement on Algorithm 2 and emulates the performance of manned, powered aircraft. The lateral guidance algorithm originally developed by Park, Deyst, and How (2007) is enhanced to include wind information in the guidance logic. A simple assumption is also made that reduces the complexity of the algorithm in following a circular path, yet without sacrificing performance. Finally, a specific method of supplying the correct turning direction is also used. Simulations have shown that this new algorithm, named the Enhanced Nonlinear Guidance (ENG) algorithm, performs much better in changing winds, with cross-track errors at the approach point within 2 m, compared to over 10 m using Park's algorithm. A fourth contribution is made in designing the Flight Path Following Guidance (FPFG) algorithm, which uses path angle calculations and the MacCready theory to determine the optimal speed to fly in winds. This algorithm also uses proportional integral- derivative (PID) gain schedules to finely tune the tracking accuracies, and has demonstrated in simulation vertical miss distances of under 2 m in changing winds. A fifth contribution is made in designing the Modified Proportional Navigation (MPN) algorithm, which uses principles from proportional navigation and the ENG algorithm, as well as methods specifically its own, to calculate the required pitch to fly. This algorithm is robust to wind changes, and is easily adaptable to any aircraft type. Tracking accuracies obtained with this algorithm are also comparable to those obtained using the FPFG algorithm. For all three preceding guidance algorithms, a novel method utilising the geometric and time relationship between aircraft and path is also employed to ensure that the aircraft is still able to track the desired path to completion in strong winds, while remaining stabilised. Finally, a derived contribution is made in modifying the 3-D Dubins Curves algorithm to suit helicopter flight dynamics. This modification allows a helicopter to autonomously track both stationary and moving targets in flight, and is highly advantageous for applications such as traffic surveillance, police pursuit, security or payload delivery. Each of these achievements serves to enhance the on-board autonomy and safety of a UAV, which in turn will help facilitate the integration of UAVs into civilian airspace for a wider appreciation of the good that they can provide. The automated UAV forced landing planning and guidance strategies presented in this thesis will allow the progression of this technology from the design and developmental stages, through to a prototype system that can demonstrate its effectiveness to the UAV research and operations community.
Resumo:
Establishing a persistent presence in the ocean with an Autonomous Underwater Vehicle capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of Lagrangian profiling floats for such extended deployments. We propose a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy to achieve general control of this minimally-actuated underwater vehicle. We extend experimentally validated techniques for utilising ocean current models to control under-actuated autonomous underwater vehicles by presenting this investigation into the application of these methods on profiling floats. With the appropriate vertical actuation, and utilising spatiotemporal variations in water speed and direction, we show that broad controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution over a given duration. The computed depth plan is generated with a model predictive controller, and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA USA, that show surprising results in the ability of a drifting vehicle to maintain a prescribed course and reach a desired location.
Resumo:
Children are vulnerable to temperature extremes. This paper aimed to review the literature regarding the relationship between ambient temperature and children’s health and to propose future research directions. A literature search was conducted in February 2012 using the databases including PubMed, ProQuest, ScienceDirect, Scopus and Web of Science. Empirical studies regarding the impact of ambient temperature on children’s mortality and morbidity were included. The existing literature indicates that very young children, especially children under one year of age, are particularly vulnerable to heat-related deaths. Hot and cold temperatures mainly affect cases of infectious diseases among children, including gastrointestinal diseases, malaria, hand, foot and mouse disease, and respiratory diseases. Paediatric allergic diseases, like eczema, are also sensitive to temperature extremes. During heat waves, the incidences of renal disease, fever and electrolyte imbalance among children increase significantly. Future research is needed to examine the balance between hot- and cold-temperature related mortality and morbidity among children; evaluate the impacts of cold spells on cause-specific mortality in children; identify the most sensitive temperature exposure and health outcomes to quantify the impact of temperature extremes on children; elucidate the possible modifiers of the temperature and children’s health relationship; and project children’s disease burden under different climate change scenarios.
Resumo:
Objectives: To assess the impact of exposure to ambient heat on urolithiasis among outdoor workers in a subtropical city of China. Methods: The 2003–2010 health check data of a shipbuilding company in Guangzhou, China were acquired. 190 cases and 760 matched controls were involved in this study. We assessed the relationship between exposure to ambient heat and urolithiasis for different occupations using conditional logistic regression. Results: Spray painters were most likely to develop urolithiasis (OR = 4.4; 95% CI: 1.7, 11.4), followed by smelter workers (OR = 4.0; 95% CI: 1.8, 9.2), welders (OR = 3.7; 95% CI: 1.9, 7.2), production security and quality inspectors (OR = 2.7; 95% CI: 1.4, 3.0), and assemblers (OR = 2.2; 95% CI: 1.1, 4.3). Overall, outdoor workers were more likely to present with urolithiasis compared with indoor employees (p b 0.05). In addition, workers with longer cumulative exposure time (OR = 1.5; 95% CI: 1.2, 1.8) and abnormal blood pressure (OR = 1.6; 95% CI: 1.0, 2.5) had higher risk for urolithiasis. Conclusions: Our findings demonstrate a significant association between exposure to ambient heat and urolithiasis among outdoor working populations. Public health intervention strategies should be developed to specifically target outdoor occupations.
Resumo:
In this paper we describe the preliminary results of a field study which evaluated the use of MiniOrb, a system that employs ambient and tangible interaction mechanisms to allow inhabitants of office environments to report on subjectively perceived office comfort levels. The purpose of this study was to explore the role of ubiquitous computing in the individual control of indoor climate and specifically answer the question to what extent ambient and tangible interaction mechanisms are suited for the task of capturing individual comfort preferences in a non-obtrusive manner. We outline the preliminary results of an in-situ trial of the system.
Resumo:
The current study was undertaken to enumerate Gram-positive bacteria in fresh sub-tropical marine fish and determine the effect of ambient storage (25°C) on the Gram-positive bacterial count. Total and Gram-positive bacteria were enumerated in the muscles, gills and gut of fresh and stored Pseudocaranx dentex, Pagrus auratus and Mugil cephalus on tryptone soya agar (TSA) and TSA with 0.25% phenylethyl alcohol (PEA), respectively. Initial studies indicated that PEA significantly reduced total aerobic bacterial count (TABC) whereas control Gram-positive bacteria were not affected by 0.25% PEA. TABC significantly increased in all fish body parts, whereas Gram-positive aerobic bacterial count (GABC) significantly increased only in the muscles and gills during ambient storage for 15 h. The TABC of the fish species increased from 4.00, 6.13 and 4.58 log cfu g-1, respectively in the muscles, gills, and gut to 6.31, 7.31 and 7.23 log cfu g-1 by the end of storage. GABC increased from 2.00, 3.52 and 2.20 log cfu g-1 to 4.70, 5.85 and 3.36 log cfu g-1. Within each species, TABC were significantly higher in the gills compared to that of muscles and gut; however, no significant differences were found in GABC between muscles and gills. This study demonstrated the potential importance of Gram-positive bacteria in sub-tropical marine fish and their spoilage.
Resumo:
Three field trials were conducted over 12 months to assess the pathogenicity of Metarhizium anisopliae to parasitic stages of Rhipicephalus (Boophilus) microplus on dairy heifers under different environmental conditions. Two isolates were selected based on their high optimal growth temperature (30 °C), good spore production characteristics and ability to quickly kill adult engorged ticks in the laboratory. Spores were formulated in an oil emulsion and applied using a motor driven spray unit. Surface temperatures of selected animals were monitored, as were the ambient temperature and relative humidity. Unengorged ticks sampled from each animal immediately after treatment were incubated in the laboratory to assess the efficacy of the formulation and application. Egg production by engorged ticks collected in the first 3 days after treatment was monitored. Side counts of standard adult female ticks were conducted daily, before and after treatment to assess the performance of the fungus against all tick stages on the animals. In each trial the formulation rapidly caused 100% mortality in unengorged ticks that were removed from cattle and cultured in the laboratory. A significant reduction in egg production was recorded for engorged ticks collected in the 3 days post-treatment. However, there was little effect of the formulation on the survival of ticks on cattle, indicating that there is an interaction between the environment of the ticks on the cattle and the biopesticide, which reduces its efficacy against ticks.
Resumo:
In this study, we used Parthenium hysterophorus and one of its biological control agents, the winter rust (Puccinia abrupta var. partheniicola) as a model system to investigate how the weed may respond to infection under a climate change scenario involving an elevated atmospheric CO2 (550 μmol mol−1) concentration. Under such a scenario, P. hysterophorus plants grew significantly taller (52%) and produced more biomass (55%) than under the ambient atmospheric CO2 concentration (380 μmol mol−1). Following winter rust infection, biomass production was reduced by 17% under the ambient and by 30% under the elevated atmospheric CO2 concentration. The production of branches and leaf area was significantly increased by 62% and 120%, under the elevated as compared with ambient CO2 concentration, but unaffected by rust infection under either condition. The photosynthesis and water use efficiency (WUE) of P. hysterophorus plants were increased by 94% and 400%, under the elevated as compared with the ambient atmospheric CO2 concentration. However, in the rust-infected plants, the photosynthesis and WUE decreased by 18% and 28%, respectively, under the elevated CO2 and were unaffected by the ambient atmospheric CO2 concentration. The results suggest that although P. hysterophorus will benefit from a future climate involving an elevation of the atmospheric CO2 concentration, it is also likely that the winter rust will perform more effectively as a biological control agent under these same conditions.
Resumo:
The shelf-life of mangoes is limited by two main postharvest diseases when not consistently managed. These are anthracnose ( Colletotrichum gloeosporioides) and stem end rots ( Neofusicoccum parvum). The management of these diseases has often relied mainly on the use of fungicide applications either as field spray treatments and/or postharvest dips. Current postharvest dips are under continuous threats because of health concerns and the maximum residue levels allowed on treated fruit continuous to be reviewed and re-assessed. Research needs to keep up with the rate at which changes are occurring following some of these reviews. The recent withdrawal of carbendazin (Spinflo), as a postharvest dip being used to manage stem end rots necessitated the urgent search for a replacement fungicide to manage this disease. A study was therefore undertaken to compare the efficacy of current and potential products that could be used to fill the gap. The following products were evaluated: Carbendazin (Spinflo), Prochloraz (Sportak), Thiobendazole (TBZ) and Fludioxonil (Scholar). These products were tested both under ambient temperatures and as hot dips to identify one that was most effective. Scholar as a hot dip was the most effective product among the ones compared. It effectively controlled both anthracnose and stem end rots at highly significant levels when compared to the untreated control and even Spinflo which is being replaced. As a cold dip, it had some limited effect on anthracnose but had virtually no effect on stem end rots. Based on its performance in these experiments, the product has been recommended for rates and residue studies so that it can be registered as a hot dip for use in controlling postharvest diseases of mangoes.
Resumo:
Significant progress has been made in the fabrication of micron and sub-micron structures whose motion can be controlled in liquids under ambient conditions. The aim of many of these engineering endeavors is to be able to build and propel an artificial micro-structure that rivals the versatility of biological swimmers of similar size, e. g. motile bacterial cells. Applications for such artificial ``micro-bots'' are envisioned to range from microrheology to targeted drug delivery and microsurgery, and require full motion-control under ambient conditions. In this Mini-Review we discuss the construction, actuation, and operation of several devices that have recently been reported, especially systems that can be controlled by and propelled with homogenous magnetic fields. We describe the fabrication and associated experimental challenges and discuss potential applications.
Resumo:
This paper presents the instrumentation and control architecture for a laboratory based two-stage 4-bed silica gel + water adsorption system. The system consists of primarily two fluids: refrigerant (water vapour) and heat transfer fluid (water) flowing through various components. Heat input to the system is simulated using multiple heaters and ambient air is used as the heat sink. The laboratory setup incorporates a real time National Instruments (NI) controller to control several digital and analog valves, heaters, pumps and fans along with simultaneous data acquisition from various flow, pressure and temperature sensors. The paper also presents in detail the various automated and manual tasks required for successful operation of the system. Finally the system pressure and temperature dynamics are reported and its performance evaluated for various cycle times. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The negative impacts of ambient aerosol particles, or particulate matter (PM), on human health and climate are well recognized. However, owing to the complexity of aerosol particle formation and chemical evolution, emissions control strategies remain difficult to develop in a cost effective manner. In this work, three studies are presented to address several key issues currently stymieing California's efforts to continue improving its air quality.
Gas-phase organic mass (GPOM) and CO emission factors are used in conjunction with measured enhancements in oxygenated organic aerosol (OOA) relative to CO to quantify the significant lack of closure between expected and observed organic aerosol concentrations attributable to fossil-fuel emissions. Two possible conclusions emerge from the analysis to yield consistency with the ambient organic data: (1) vehicular emissions are not a dominant source of anthropogenic fossil SOA in the Los Angeles Basin, or (2) the ambient SOA mass yields used to determine the SOA formation potential of vehicular emissions are substantially higher than those derived from laboratory chamber studies. Additional laboratory chamber studies confirm that, owing to vapor-phase wall loss, the SOA mass yields currently used in virtually all 3D chemical transport models are biased low by as much as a factor of 4. Furthermore, predictions from the Statistical Oxidation Model suggest that this bias could be as high as a factor of 8 if the influence of the chamber walls could be removed entirely.
Once vapor-phase wall loss has been accounted for in a new suite of laboratory chamber experiments, the SOA parameterizations within atmospheric chemical transport models should also be updated. To address the numerical challenges of implementing the next generation of SOA models in atmospheric chemical transport models, a novel mathematical framework, termed the Moment Method, is designed and presented. Assessment of the Moment Method strengths and weaknesses provide valuable insight that can guide future development of SOA modules for atmospheric CTMs.
Finally, regional inorganic aerosol formation and evolution is investigated via detailed comparison of predictions from the Community Multiscale Air Quality (CMAQ version 4.7.1) model against a suite of airborne and ground-based meteorological measurements, gas- and aerosol-phase inorganic measurements, and black carbon (BC) measurements over Southern California during the CalNex field campaign in May/June 2010. Results suggests that continuing to target sulfur emissions with the hopes of reducing ambient PM concentrations may not the most effective strategy for Southern California. Instead, targeting dairy emissions is likely to be an effective strategy for substantially reducing ammonium nitrate concentrations in the eastern part of the Los Angeles Basin.
Resumo:
250 p. + anexos