998 resultados para Alumina particles


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current study focuses on the effect of the material type and the lubricant on the abrasive wear behaviour of two important commercially available ceramic on ceramic prosthetic systems, namely, Biolox(R) forte and Bioloxl(R) delta (CeramTec AG, Germany). A standard microabrasion wear apparatus was used to produce '3-body' abrasive wear scars with three different lubricants: ultrapure water, 25 vol% new-born calf serum solution and 1 wt% carboxymethyl cellulose sodium salt (CMC-Na) solution. 1 mu m alumina particles were used as the abrasive. The morphology of the wear scar was examined in detail using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Subsurface damage accumulation was investigated by Focused Ion Beam (FIB) cross-sectional milling and Transmission Electron Microscopy (TEM). The effect of the lubricant on the '3-body' abrasive wear mechanisms is discussed and the effect of material properties compared. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study was designed to analyse the average depth of the microporosity of a nickel-chromium (Ni-Cr) system alloy (Verabond II). The metal surface was subject to one of the following surface treatment: (i) Electrolytic etching in nitric acid 0.5 N at a current density of 250 mA cm(-2) ; (ii) chemical etching with CG-Etch etchant; and (iii) Sandblasting with alumina particles 50 mum. Half of the samples were polished before the surface treatments. The depth of porosity was measured through photomicrographs (500x) with a profilometer, and the data were statistically analysed using an analysis of variance (anova) followed by Tukey's test. The conclusions were (i) Differents surface treatment of the Ni-Cr system alloy lead to different depths of microporosity; (ii) the greatest depth of porosity was observed in non-polished alloy; (iii) the greatest and identical depth of microporosity was observed following electrolytic etching and chemical etching; (iv) the least and identical depth of microporosity was observed with chemical etching and sandblasting with alumina particles 50 mum, and (v) Chemical etching showed an intermediary depth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boehmite (gamma-AlOOH) synthesis have been investigated using a spray pyrolysis (SP) device starting from a stable sol of Al-tri-sec-butoxide peptized by nitric acid. Free spherical particles from 100 to 500 nm have been elaborated. Particles sub-structure is made of nano-crystalline boehmite with very small average crystallite size (one crystal cell along the b axis). The nano-crystalline boehmite synthesized by SP at low temperature (200 degrees C) is spontaneously dispersible in water without any surface treatment. Boehmite powder may be transformed to transition gamma-alumina by heat post-treatment. Powders of sub-micrometric and spherical gamma-alumina particles may also be synthesized by SP at 700 degrees C. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia. © 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Odontológicas - FOAR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study compared the effect of physicochemical surface conditioning methods on the adhesion of bis-GMA-based resin cement to particulate filler composite (PFC) used for indirect dental restorations. PFC blocks (N (block)=54, n (block)=9 per group) were polymerized and randomly subjected to one of the following surface conditioning methods: a) No conditioning (Control-C), b) Hydrofluoric acid (HF)etching for 60s (AE60), c) HF for 90s (AE90), d) HF for 120s (AE120), e) HF for 180s (AE180), and f) air-abrasion with 30 mu m silica-coated alumina particles (AB). The conditioned surfaces were silanized with an MPS silane, and an adhesive resin was applied. Resin composite blocks were bonded to PFC using resin cement and photo-polymerized. PFC-cement-resin composite blocks were cut under coolant water to obtain bar specimens (1mmx0.8mm). Microtensile bond strength test (mu TBS)was performed in a universal testing machine (1mm/min). After debonding, failure modes were classified using stereomicroscopy. Surface characterization was performed on a set of separate specimen surfaces using Scanning Electron Microscopy (SEM), X-Ray Dispersive Spectroscopy (XDS), X-Ray Photoelectron Spectroscopy (XPS), and Fourier Transform-Raman Spectroscopy (FT-RS). Mean mu TBS (MPa) of C (35.6 +/- 4.9) was significantly lower than those of other groups (40.2 +/- 5.6-47.4 +/- 6.1) (p<0.05). The highest mu TBS was obtained in Group AB (47.4 +/- 6.1). Prolonged duration of HF etching increased the results (AE180: 41.9 +/- 7), but was not significantly different than that of AB (p>0.05). Failure types were predominantly cohesive in PFC (34 out of 54) followed by cohesive failure in the cement (16 out of 54). Degree of conversion (DC) of the PFC was 63 +/- 10%. SEM analysis showed increased irregularities on PFC surfaces with the increased etching time. Chemical surface analyses with XPS and FT-RS indicated 11-70% silane on the PFC surfaces that contributed to improved bond strength compared to Group C that presented 5% silane, which seemed to be a threshold. Group AB displayed 83% SiO2 and 17% silane on the surfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the influence of zirconia surface treatments on low-temperature degradation (LTD). Disc-shaped specimens were subjected to one of four surface treatments, denoted as C (controlno surface treatment), Si (air abrasion with 30 mu m silica-modified alumina particles), Al (air abrasion with 30 mu m alumina particles), and Gr (grinding with 120 grit diamond discs). Half of the samples were submitted to autoclave treatment for 12 h (127 degrees C, 1.5 bar). Samples were characterized by x-ray diffraction and profilometer analysis and were subjected to biaxial flexural strength test. All of the groups exhibited an increase in the amount of monoclinic phase (m-phase) after LTD. The tm transformation was remarkable for the specimens from the C group, which also exhibited a significant increase in strength. The Gr group also exhibited an increase in strength but lower initial roughness, which probably suppressed LTD on the zirconia surface. The specimens subjected to air abrasion exhibited higher initial amounts of m-phase and a small increase in m-phase after LTD; the strength was not affected in these groups. The effects of LTD were different with each surface treatment applied. Apparently, LTD may be suppressed by smoother surfaces or the presence of an initial amount of m-phase on zirconia surface. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 101B: 1387-1392, 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To investigate the adhesive potential of novel zirconia primers and universal adhesives to surface-treated zirconia substrates.Methods: Zirconia bars were manufactured (3.0 mm x 3.0 mm x 9.0 mm) and treated as follows: no treatment (C); air abrasion with 35 mu m alumina particles (S); air abrasion with 30 mu m silica particles using one of two systems (Rocatec or SilJet) and; glazing (G). Groups C and S were subsequentially treated with one of the following primers or adhesives: ZP (Z-Prime Plus), AZ (AZ Primer); MP (Monobond Plus); SU (ScotchBond Universal) and; EA (an Experimental Adhesive). Groups Rocatec and SilJet were silanized prior to cementation. Samples form group G were further etched and silanized. Bars were cemented (Multilink) onto bars of a silicate-based ceramic (3.0 mm x 3.0 mm x 9.0 mm) at 90 degrees angle, thermocycled (2.500 cycles, 5-55 degrees C, 30 s dwell time), and tested in tensile strength test. Failure analysis was performed on fractured specimens to measure the bonding area and crack origin.Results: Specimens from group C did not survive thermocycling, while CMP, CSU and CEA groups survived thermocycling but rendered low values of bond strength. All primers presented a better bond performance after air abrasion with Al2O3 particles. SilJet was similar to Rocatec, both presenting the best bond strength results, along with SMP, SSU and CEA. G promoted intermediate bond strength values. Failure mode was predominately adhesive on zirconia surface combined to cohesive of the luting agent.Conclusions: Universal adhesives (MP, SU, EA) may be a considerable alternative for bonding to zirconia, but air abrasion is still previously required. Air abrasion with silica particles followed by silane application also presented high bond strength values. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper studies attained microstructures and reactive mechanisms involved in vacuum infiltration of copper aluminate preforms with liquid aluminium. At high temperatures, under vacuum, the inherent alumina film enveloping the metal is overcome, and aluminium is expected to reduce copper aluminate, rendering alumina and copper. Under this approach, copper aluminate toils as a controlled infiltration path for aluminium, resulting in reactive wetting and infiltration of the preforms. Ceramic preforms containing a mixture of Al2O3 and CuAl2O4 were infiltrated with aluminium under distinct vacuum levels and temperatures, and the resulting reaction and infiltration behaviour is discussed. Copper aluminates stability ranges depend on vacuum level and oxygen partial pressure, which determine both CuAl2O4 and CuAlO2 ability for liquid aluminium infiltration. At 1100 °C and 0.76 atm vacuum level CuAl2O4 is stable, indicating pO2 above 0.11 atm. Reactive infiltration is achieved via reaction between aluminium and CuAl2O4; however, fast formation of an alumina film blocking liquid aluminium wicking results in incipient infiltration. At 1000 °C and 3.8 × 10−7 atm vacuum level, CuAlO2 decomposes to Cu and Al2O3 indicating a pO2 below 6.0 × 10−7 atm; infiltration of the ceramic is hindered by the non-wetting behaviour of the resulting metal alloy. At 1000 °C and 1.9 × 10−6 atm vacuum level CuAlO2 is stable, indicating pO2 above 6.0 × 10−7 atm. Extensive infiltration is achieved via redox reaction between aluminium and CuAlO2, rendering a microstructure characterised by uniform distribution of alumina particles amid an aluminium matrix. This work evidences that liquid aluminium infiltration upon copper aluminate-rich preforms is a feasible route to produce Al–matrix alumina-reinforced composites. The associated reduction reaction renders alumina, as fine particulate composite reinforcements, and copper, which dissolves in liquid aluminium contributing as a matrix strengthener.