961 resultados para Alternative solution
Resumo:
The problem of identifying parameters of nonlinear vibrating systems using spatially incomplete, noisy, time-domain measurements is considered. The problem is formulated within the framework of dynamic state estimation formalisms that employ particle filters. The parameters of the system, which are to be identified, are treated as a set of random variables with finite number of discrete states. The study develops a procedure that combines a bank of self-learning particle filters with a global iteration strategy to estimate the probability distribution of the system parameters to be identified. Individual particle filters are based on the sequential importance sampling filter algorithm that is readily available in the existing literature. The paper develops the requisite recursive formulary for evaluating the evolution of weights associated with system parameter states. The correctness of the formulations developed is demonstrated first by applying the proposed procedure to a few linear vibrating systems for which an alternative solution using adaptive Kalman filter method is possible. Subsequently, illustrative examples on three nonlinear vibrating systems, using synthetic vibration data, are presented to reveal the correct functioning of the method. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In the paper, the total damping and synchronising torques, which determine the dynamic stability of a synchronous generator in a power system, have been traced to their origin. The positive and negative components released or consumed by the voltage regulator, and by the various windings of the machine, have been isolated, with the object of making a quantitative assessment of the effects of various gains and time constants on the dynamic stability of a synchronous machine under different operating conditions. The analysis is based on the properties of quadratic invariance in tensor calculus. An alternative solution by network analysis has also been provided to establish the validity of the tensor approach.
Resumo:
The most important property of a bone cement or a bone substitute in load bearing orthopaedic implants is good integration with host bone with reduced bone resorption and increased bone regeneration at the implant interface. Long term implantation of metal-based joint replacements often results in corrosion and particle release, initiating chronic inflammation leading onto osteoporosis of host bone. An alternative solution is the coating of metal implants with hydroxyapatite (HA) or bioglass or the use of bulk bioglass or HA-based composites. In the above perspective, the present study reports the in vivo biocompatibility and bone healing of the strontium (Sr)-stabilized bulk glass ceramics with the nominal composition of 4.5SiO(2)-3Al(2)O(3)-1.5P(2)O(5)-3SrO-2SrF(2) during short term implantation of up to 12 weeks in rabbit animal model. The progression of healing and bone regeneration was qualitatively and quantitatively assessed using fluorescence microscopy, histological analysis and micro-computed tomography. The overall assessment of the present study establishes that the investigated glass ceramic is biocompatible in vivo with regards to local effects after short term implantation in rabbit animal model. Excellent healing was observed, which is comparable to that seen in response to a commercially available implant of HA-based bioglass alone. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The lack of stability in some matching problems suggests that alternative solution concepts to the core might be applied to find predictable matchings. We propose the absorbing sets as a solution for the class of roommate problems with strict preferences. This solution, which always exists, either gives the matchings in the core or predicts some other matchings when the core is empty. Furthermore, it satisfies an interesting property of outer stability. We also characterize the absorbing sets, determine their number and, in case of multiplicity, we find that they all share a similar structure.
Resumo:
221 p.
Resumo:
[EU]Hortzetako protesi osoek edentulismo partzial edo osoa jasaten duten pertsonentzat soluzio alternatibo bat suposatzen dute hortz bakarreko inplanteen aurrean, goialdeko edo behealdeko hortz guztiak (edo batzuk) pieza bakarrarekin ordezkatuz [11]. Protesi sistema hauen pieza bakoitzaren fabrikazioak zehaztasun handia eskatzen du eta aztertu beharreko hainbat faktore daude, amaiera produktuaren funtzionamendua egokia izatea nahi bada. Hauetako aspektu asko aurretik gauzatuak izan diren lanetan jorratu dira jadanik, tolerantzia gap-a eta torlojutze sekuentzia bezalako aldagaiei buruz hainbat ikerkuntza eginez [1]. Lan honen bidez, bi faktore hauez gain hezur erlaxazioaren eragina kontuan hartu nahi da, All On Four sistema batean edukiko duen irismena neurtzeko. Horrela, protesiaren fabrikazio edota ezarpenerako baldintza onargarri minimoak ezagutzea espero da, erabiltzailearentzat protesia egokia suerta dadin.
Resumo:
XII, 116 p.
Resumo:
A presente tese teve como objetivo primordial cartografar e analisar algumas instituições e mitos que potencializaram, no contexto do estado do Rio de Janeiro, a emergência e a legitimação da prática da adoção-pronta. Por adoção-pronta, entendemos as solicitações de adoções que aportam nos Juizados da Infância e da Juventude como fato consumado, isto é, a criança a ser adotada já se encontra, concretamente, com os requerentes que pretendem regularizar uma situação instituída. Essa medida, via de regra, sustenta-se num tripé: uma mãe que entrega, um casal que acolhe e discursos de especialistas, dentre eles, psicólogos e assistentes sociais, que ratificam tal relação. A amostragem da pesquisa foi composta por dez processos de adoção-pronta, sendo cinco na vigência do Código de Menores e cinco sob a ótica do Estatuto da Criança e do Adolescente. A genealogia histórica de Foucault, as ferramentas da Análise Institucional bem como a Análise e a Ordem do Discurso de Orlandi e Foucault foram, nesse percurso, os recortes metodológicos priorizados. As análises permitiram constatar que são pobres, jovens, solteiras e empregadas domésticas as mulheres-mães que entregam seus filhos em adoção. Os que acolhem, em sua maioria, são legalmente casados, economicamente ativos, possuem filhos e, não mantém com a mãe biológica, laços de parentalidade. Os laudos técnicos, via de regra, têm colocado, na mãe pobre, a responsabilidade e a autonomia pelo ato de entrega e, portanto, vêm funcionando como instrumentos de produção e sustentação de subjetividades, tais como a de mãe desnaturada. Em síntese, as análises nos possibilitaram concluir que os discursos dos especialistas longe de afirmarem a ineficácia das políticas públicas como co-autoras dos processos de destituição do poder familiar, vêm afirmando a adoção-pronta como prática de repercussão pública, isto é, enquanto uma solução-alternativa ao quadro de pobreza de cidadania.
Resumo:
Growing concerns regarding fluctuating fuel costs and pollution targets for gas emissions, have led the aviation industry to seek alternative technologies to reduce its dependency on crude oil, and its net emissions. Recently blends of bio-fuel with kerosine, have become an alternative solution as they offer "greener" aircraft and reduce demand on crude oil. Interestingly, this technique is able to be implemented in current aircraft as it does not require any modification to the engine. Therefore, the present study investigates the effect of blends of bio-synthetic paraffinic kerosine with Jet-A in a civil aircraft engine, focusing on its performance and exhaust emissions. Two bio-fuels are considered: Jatropha Bio-synthetic Paraffinic Kerosine (JSPK) and Camelina Bio-synthetic Paraffinic Kerosine (CSPK); there are evaluated as pure fuels, and as 10% and 50% blend with Jet-A. Results obtained show improvement in thrust, fuel flow and SFC as composition of bio-fuel in the blend increases. At design point condition, results on engine emissions show reduction in NO x, and CO, but increases of CO is observed at fixed fuel condition, as the composition of bio-fuel in the mixture increases. Copyright © 2012 by ASME.
Resumo:
One of the major challenges encountered in earthquake geotechnical physical modelling is to determine the effects induced by the artificial boundaries of the soil container on the dynamic response of the soil deposit. Over the past years, the use of absorbing material for minimising boundaries effects has become an increasing alternative solution, yet little systematic research has been carried out to quantify the dynamic performance of the absorbing material and the amount of energy dissipated by it. This paper aims to examine the effects induced by the absorbing material on the dynamic response of the soil, and estimate the amount of energy reduced by the absorbing boundaries. The absorbent material consisted of panels made of commercially available foams, which were placed on both inner sides of end-walls of the soil container. These walls are perpendicular to the shaking direction. Three types of foam with different mechanical properties were used in this study. The results were obtained from tests carried out using a shaking table and Redhill 110 sand for the soil deposit. It was found that a considerably amount of energy was dissipated, in particular within the frequency range close to the resonance of the soil deposit. This feature suggests that the presence of foams provides a significant influence to the dynamic response of the soil. The energy absorbed by the boundaries was also quantified from integrals of the Power Spectral Density of the accelerations. It was found that the absorbed energy ranged between a minimum of 41% to a maximum of 92% of the input levels, depending mainly on the foam used in the test. The effects provided by the acceleration levels and depth at which the energy was evaluated were practically negligible. Finally, practical guidelines for the selection of the absorbing material are provided.
Resumo:
Making use of very detailed neurophysiological, anatomical, and behavioral data to build biological-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalabiltiy, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multu-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions of ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further developement of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effecitively collaborate using a modern neural simulation platform.
Resumo:
Making use of very detailed neurophysiological, anatomical, and behavioral data to build biologically-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalability, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multi-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions or ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further development of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effectively collaborate using a modern neural simulation platform.
Resumo:
Summary form only given. Currently the vast majority of adhesive materials in electronic products are bonded using convection heating or infra-red as well as UV-curing. These thermal processing steps can take several hours to perform, slowing throughput and contributing a significant portion of the cost of manufacturing. With the demand for lighter, faster, and smaller electronic devices, there is a need for innovative material processing techniques and control methodologies. The increasing demand for smaller and cheaper devices pose engineering challenges in designing a curing systems that minimize the time required between the curing of devices in a production line, allowing access to the components during curing for alignment and testing. Microwave radiation exhibits several favorable characteristics and over the past few years has attracted increased academic and industrial attention as an alternative solution to curing of flip-chip underfills, bumps, glob top and potting cure, structural bonding, die attach, wafer processing, opto-electronics assembly as well as RF-ID tag bonding. Microwave energy fundamentally accelerates the cure kinetics of polymer adhesives. It provides a route to focus heat into the polymer materials penetrating the substrates that typically remain transparent. Therefore microwave energy can be used to minimise the temperature increase in the surrounding materials. The short path between the energy source and the cured material ensures a rapid heating rate and an overall low thermal budget. In this keynote talk, we will review the principles of microwave curing of materials for high density packing. Emphasis will be placed on recent advances within ongoing research in the UK on the realization of "open-oven" cavities, tailored to address existing challenges. Open-ovens do not require positioning of the device into the cavity through a movable door, hence being more suitable for fully automated processing. Further potential advantages of op- - en-oven curing include the possibility for simultaneous fine placement and curing of the device into a larger assembly. These capabilities promise productivity gains by combining assembly, placement and bonding into a single processing step. Moreover, the proposed design allows for selective heating within a large substrate, which can be useful particularly when the latter includes parts sensitive to increased temperatures.
Resumo:
Thesis (Master's)--University of Washington, 2016-03
Resumo:
Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas