983 resultados para Alternative material


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, the search for new technologies that are able to follow the upcoming challenges in oil industry is a constant. Always trying properties improvements of the used materials, looking for the best performance and greater life time. Besides the search for technologies that show an improvement of performance, the search for materials environmentally correct along the whole production process. In Oil well cementing, this search for new technologies passes through the development of slurry systems that support these requests and that are also environmentally friendly. In this context, the use of geopolymer slurries is a great alternative route to cementing oil wells. Besides having good properties, comparable to Portland cement slurries, this alternative material releases much less CO2 gas in the production of their root materials when compared the production of Portland cement, which releases tons of CO2. In order to improve the properties of geopolymer slurries has been added Calcium Oxide, as observed in other studies that slurries where the Calcium is present the values of compressive strength is greater. The addition has been realized based in the CaO/SiO2 molar ratio of 0.05, 0.10 and 0.15. Have been performed compressive strength tests, thickening time, rheology and fliud loss control test of the slurries, following NBR 9831, as well as the physical chemical characterization of XRD, SEM and TG. Has been observed in most of the tests the slurries follow a tendency until the ratio of 0.10, which inverses in the ratio 0.15. This behavior can be explained by two phenomena that occur simultaneously, the first one is the break of the polymer chains and a consequent increase in molucules mobility, which prevails until the ratio of 0.1, and the second is possible approach of the chains due to the capacity of the calcium ions stabilize the charges of two different aluminum. There is only one linearity in the mechanical behavior that can be attributed to the appereance of the C-S-H phase. Based on this, it is concluded that the phenomenon of breaking the polymer chains predominates until the ratio of 0.1, causing an increase of the filtrate volume, lower rheological parameters and increasing thickening time. From the ratio of 0.15 the approach of the chains predominates, and the behavior is reversed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fuel cells are considered one of the most promising ways of converting electrical energy due to its high yield and by using hydrogen (as fuel) which is considered one of the most important source of clean energy for the future. Rare earths doped ceria has been widely investigated as an alternative material for the electrolyte of solid oxide fuel cells (SOFCs) due to its high ionic conductivity at low operating temperatures compared with the traditional electrolytes based on stabilized zirconia. This work investigates the effect of gallium oxide (Gallia) as a sintering aid in Eu doped ceria ceramic electrolytes since this effect has already been investigated for Gd, Sm and Y doped ceria electrolytes. The desired goal with the use of a sintering aid is to reduce the sintering temperature aiming to produce dense ceramics. In this study we investigated the effects on densification, microstructure and ionic conduction caused by different molar fraction of the dopants europium (10, 15 and 20%) and gallium oxide (0.3, 0.6 and 0.9%) in samples sintered at 1300, 1350 and 1450 0 C. Samaria (10 and 20%) doped ceria samples sintered between 1350 and 1450 °C were used as reference. Samples were synthesized using the cation complexation method. The ceramics powders were characterized by XRF, XRD and SEM, while the sintered samples were investigated by its relative density, SEM and impedance spectroscopy. It was showed that gallia contents up to 0.6% act as excellent sintering aids in Eu doped ceria. Above this aid content, gallia addition does not promote significant increase in density of the ceramics. In Ga free samples the larger densification were accomplished with Eu 15% molar, effect expressed in the microstructure with higher grain growth although reduced and surrounded by many open pores. Relative densities greater than 95 % were obtained by sintering between 1300 and 1350 °C against the usual range 1500 - 1600 0 C. Samples containing 10% of Sm and 0.9% of Ga reached 96% of theoretical density by sintering at 1350 0 C for 3h, a gain compared to 97% achieved with 20% of Sm and 1% of Ga co-doped cerias sintered at 1450 0 C for 24 h as described in the literature. It is found that the addition of gallia in the Eu doped ceria has a positive effect on the grain conductivity and a negative one in the grain boundary conductivity resulting in a small decrease in the total conductivity which will not compromise its application as sintering aids in ceria based electrolytes. Typical total conductivity values at 600 and 700 °C, around 10 and 30 mS.cm -1 respectively were reached in this study. Samples with 15% of Eu and 0.9 % of Ga sintered at 1300 and 1350 °C showed relative densities greater than 96% and total conductivity (measured at 700 °C) between 20 and 33 mS.cm -1 . The simultaneous sintering of the electrolyte with the anode is one of the goals of research in materials for SOFCs. The results obtained in this study suggest that dense Eu and Ga co-doped ceria electrolytes with good ionic conductivity can be sintered simultaneously with the anode at temperatures below 1350 °C, the usual temperature for firing porous anode materials

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis of experimental interlocking blocks of concrete with addition of residues of process the tires retreading production. With the population growth in recent years, industry in general has adjusted itself to resulting demand. the industry of tire retreading generates residues that have been discarded without any control. this adds to environmental pollution and promotes the proliferation of vectors harmful to health, aiming to find an application for this type of residues, this study presents experimental results to interlocking concrete block pavements, with addition of residues tires, interlocking blocks were built up and we determined, through laboratory tests, the need to set the mark that provide greater return regarding analyzed characteristics, there are four types of dosage of concrete with residues tires. We accomplished tests of compression strength, water absorption and resistance to impact. Through the preliminary results, we verified that are satisfactory, confirming the possibility of applying this type of interlocking block in environments with low demand, which would bring the economy of natural sources of aggregates, beyond ecological benefits through the reuse of residues from retreading of tires.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work the use of coconut fiber (coir) and bamboo shafts as reinforcement of soil-cement was studied, in order to obtain an alternative material to make stakes for fences in rural properties. The main objective was to study the effect of the addition of reinforcement to the soil-cement matrix. The effect of humidity on the mechanical properties was also analyzed. The soil-cement mortar was composed by a mixture, in equal parts, of soil and river sand, 14% in weight of cement and 10 % in weight of water. As reinforcement, different combinations of (a) coconut fiber with 15 mm mean length (0,3 %, 0,6 % and 1,2 % in weight) and (b) bamboo shafts, also in crescent quantities (2, 4 and 8 shafts per specimen) were used. For each combination 6 specimens were made and these were submitted to three point flexural test after 28 days of cure. In order to evaluate the effect of humidity, 1 specimen from each of the coconut fiber reinforced combination was immersed in water 24 hours prior to flexural test. The results of the tests carried out indicated that the addition of the reinforcement affected negatively the mechanical resistance and, on the other hand, increased the tenacity and the ductility of the material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The search for an adequate destination to the tires without use is a problem for many countries. The use of tire rubber in concrete through the partial substitution of the small aggregate has for objective the withdrawal of this material of the environment besides serving as alternative material in places that present sand scarcity. However, to use this type of concrete in civil construction it's necessary to verify its structural behavior. The behavior of the adherence enters the bar of armor and the concrete surrounding it has decisive importance with relation to the load capacity of the structures of reinforced concrete. In this context, this work presents, argues and evaluates the results of the experimental studies for determination of the adherence tension according to pulling up assays pull-out normalized for CEB RC6 and also related in the ASTM C-234 in concrete with and without rubber residues. Armors of nominal diameter of 10,0; 12,5 and 16 mm had been used and concrete contend 10% of rubber fibres in substitution to the sand in volume.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study compared the host response to a human and a porcine acellular dermal tissue implanted in the subcutaneous space of a rat model. The human and porcine acellular grafts were surgically implanted in the subcutaneous tissue of rats (5 rats/group) and the materials were evaluated at 7, 15, 30, 60 and 180 postoperative days (PO). The histological immune response was quantified using a digital image analysis system, which evaluated the number of vessels present in the implants and in the surrounding soft tissue, the area of inflammatory cell infiltration in the grafts, the width of the capsular formation present around the tissues and the area of implants absorbed. The data were submitted to statistical analysis. Light microscopy showed mononuclear cellular infiltration, the presence of a capsular formation surrounding the grafts and the presence of vacuolar structures (optically empty spaces) inside the implants. The image analysis comparing both materials showed significant inflammatory cells in the human graft at 15 and 30 PO, thicker capsular formation in the porcine tissue at 60 PO, increased number of vessels inside the implants and in the surrounding tissues in the porcine graft and a similar absorption pattern in both materials at 180 PO. The histological findings showed that both tissues were well-tolerated when implanted in the subcutaneous tissue of rats, allowing us to consider the porcine acellular dermal graft as a provisional alternative material for reconstructive plastic surgery. Copyright © 2005 Taylor & Francis LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil acidity and low natural fertility are the main problems for grain production in Brazilian 'cerrado'. Although lime has been the most applied source for soil correction, silicate may be an alternative material due to its lower solubility and Si supply, which is beneficial to several crops. This work aimed to evaluate the efficiency of superficial liming and calcium/magnesium silicate application on soil chemical attributes, plant nutrition, yield components and final yield of a soybean/white oat/maize/bean rotation under no-tillage system in a dry-winter region. The experiment was conducted under no tillage system in a deep acid clayey Rhodic Hapludox, Botucatu-SP, Brazil. The design was the completely randomized block with sixteen replications. Treatments consisted of two sources for soil acidity correction (dolomitic lime: ECC=90%, CaO=36% and MgO=12%; calcium/magnesium silicate: ECC=80%, CaO=34%, MgO=10% and SiO2=22%) applied in October 2006 to raise base saturation up to 70% and a control, with no soil correction. Soybean and white oat were sown in 2006/2007 as the main crop and off-season, respectively. Maize and bean were cropped in the next year (2007/2008). Products from silicate dissociation reach deeper soil layers after 18months from the application, compared to liming. Additionally, silicate is more efficient than lime to increasing phosphorus availability and reducing toxic aluminum. Such benefits in soil chemical attributes were only evidenced during bean cropping, when grain yield was higher after silicate application comparatively to liming. Both correction sources were improved mineral nutrition of all the other crops, mainly Ca and Mg levels and agronomical characteristics, reflecting in higher yield. © 2012 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Civil - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A grande quantidade de resíduos sólidos, oriundos da indústria de mineração e metalurgia, constitui um sério problema sócio-ambiental. As características físicoquímicas destes resíduos despertam grande interesse para outras indústrias. A indústria cerâmica pode ser uma interessante consumidora da maioria deste material, para suprir a grande escassez das reservas de matérias-primas atual. Neste contexto, este trabalho mostra os estudos realizados para a reciclagem da lama vermelha, como matéria-prima na produção de agregado sintético, visando à construção civil. A lama vermelha, principal rejeito industrial da fabricação de alumina, mostrou-se um insumo de grande interesse na fabricação de diferentes tipos de agregado para ser utilizado na produção de concreto, para a construção civil. Pelas suas características físico-químicas e a grande quantidade que é produzida anualmente (cerca de 10.000.000 t em duas fábricas, só no Norte do Brasil). Estudos realizados neste trabalho mostram a possibilidade de fabricação de agregados, com diferentes propriedades e possibilidades de aplicação, na indústria da construção civil. Estas propriedades dependem do controle de parâmetros, como o teor de sílica livre e argila, a granulometria e a temperatura de sinterização. Tais variáveis permitem controlar perfeitamente a formação de fase vítrea que é a responsável pelas propriedades dos agregados como: porosidade, resistência mecânica e densidade. Este material pode ser utilizado em concreto convencional ou em concretos especiais, para atender a demanda da construção civil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Worldwide environmental degradation is an undesirable byproduct resulting from the increasing demand for natural resources. Water sources are suffering intense contamination since they usually receive a huge amount of domestic and industrial effluents - which are mostly wasted without proper treatment - inserting a large number of pollutants in the environment, heavy metals included. Mercury holds great toxicological importance because, under some physicochemical conditions in a water environment, Hg (II) ion turns into methylated compounds stemming from this element, such as methylmercury CH3Hg, which is highly toxic for the aquatic community in which bioaccumulation occurs. Nowadays passive sampling techniques are being developed to enable the analytical procedures which are applied in environmental monitoring. Diffusive gradients in thin-films technique (DGT) has been proven an interesting tool for the determination of labile metal species due to its in situ application. The DGT technique consists of a piston-like device on which the following series of agents is disposed: a binding agent (conventionally Chelex 100 resin), a diffusive agent, usually a polyacrylamide gel, and a membrane filter. Nevertheless, the agents conventinally used for this technique don't usually show satisfactory results in mercury sampling. The main goal of this study was to evaluate the phosphate-treated cellulose membrane (Whatman P 81), an alternative material, as binding agent in the DGT to determine labile mercury fractions in aquatic systems. In this context, we conducted a study of the behavior of this material in relation with system variables, pH and ionic strength. Afterwards we performed immersions of the DGT devices in real and enriched samples and in situ aiming the determination of mercury

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)