867 resultados para Alternative construction method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho de Relatório de Estágio para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of teaching method in physical education is an important issue and has been a concern of the expert teacher. Teachers are expected to create a model of teaching in their field; therefore, it is reasonable to question what is the effect of an alternative teaching method on student performance in physical education. This study explores whether teaching methods with advanced planning, behavior and belief in high enthusiasm, use of instructional strategies and evaluation, together termed a systematic teaching approach, used in a physical education activity would provide an effective environment for learning which supports student achievement in the psychomotor, cognitive, and affective domains. This study also investigated whether there was a difference in performance between students who were taught with a systematic teaching approach and students who were taught with the traditional teaching model. Information was collected using two performance skills, a written test, and one questionnaire. The 68 participants were randomly assigned into either an experimental group or a control group. Two teachers were assigned to either the experimental group or the control group. The teaching experiment took place at Tamsui Oxford University College in Taiwan and lasted eight weeks. ^ Research questions were analyzed using the t-test. Results indicated that a significant difference in students' performance was found between the experimental group and the control group on both the skill tests and the paper test. Analysis of student attitude toward their teacher and their course on the questionnaire indicated a significant difference between the experimental group and the control group. ^ The findings of this study imply that students who were taught with a systematic teaching style were significantly superior to students who were taught with the traditional model on these measures. This finding supports the contention that effective teaching in physical education is related to advanced planning, high enthusiasm, instructional strategy and evaluation and that all physical education teachers should implement these planning elements in the development of the teaching strategies. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose – Virtual prototyping technologies linked to building information models are commonplace within the aeronautical and automotive industries. Their use within the construction industry is now emerging. The purpose of this paper is to show how these technologies have been adopted on the pre-tender planning for a typical construction project. Design/methodology/approach – The research methodology taken was an “action research” approach where the researchers and developers were actively involved in the production of the virtual prototypes on behalf of the contractor thereby gaining consistent access to the decisions of the planning staff. The experiences from the case study were considered together with similar research on other construction projects. Findings – The findings from the case studies identify the role of virtual prototyping in components modelling, site modelling, construction equipment modelling, temporary works modelling, construction method visualization and method verification processes. Originality/value – The paper presents a state-of-the-art review and discusses the implications for the tendering process as these technologies are adopted. The adoption of the technologies will lead to new protocols and changes in the procurement of buildings and infrastructure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent fire research into the behaviour of light gauge steel frame (LSF) wall systems has devel-oped fire design rules based on Australian and European cold-formed steel design standards, AS/NZS 4600 and Eurocode 3 Part 1.3. However, these design rules are complex since the LSF wall studs are subjected to non-uniform elevated temperature distributions when the walls are exposed to fire from one side. Therefore this paper proposes an alternative design method for routine predictions of fire resistance rating of LSF walls. In this method, suitable equations are recommended first to predict the idealised stud time-temperature pro-files of eight different LSF wall configurations subject to standard fire conditions based on full scale fire test results. A new set of equations was then proposed to find the critical hot flange (failure) temperature for a giv-en load ratio for the same LSF wall configurations with varying steel grades and thickness. These equations were developed based on detailed finite element analyses that predicted the axial compression capacities and failure times of LSF wall studs subject to non-uniform temperature distributions with varying steel grades and thicknesses. This paper proposes a simple design method in which the two sets of equations developed for time-temperature profiles and critical hot flange temperatures are used to find the failure times of LSF walls. The proposed method was verified by comparing its predictions with the results from full scale fire tests and finite element analyses. This paper presents the details of this study including the finite element models of LSF wall studs, the results from relevant fire tests and finite element analyses, and the proposed equations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The construction industry has an obligation to respond to sustainability expectations of our society. Solutions that integrate innovative, intelligent and sustainability deliverables are vital for us to meet new and emerging challenges. Industrialised Building Systems (IBS), or known otherwise as prefabrication, employs a combination of ready-made components in the construction of buildings. They promote quality of production, enhance simplification of construction processes and minimise waste. The unique characteristics of this construction method respond well to sustainability. Despite the promises however, IBS has yet to be effectively implemented in Malaysia. There are often misconceptions among key stakeholders about IBS applications. The existing rating schemes fail to assess IBS against sustainability measures. To ensure the capture of full sustainability potential in buildings developed, the critical factors and action plans agreeable to all participants in the development processes need to be identified. Through questionnaire survey, eighteen critical factors relevant to IBS sustainability were identified and encapsulated into a conceptual framework to coordinate a systematic IBS decision making approach. Five categories were used to separate the critical factors into: ecological performance; economic value; social equity and culture; technical quality; and implementation and enforcement. This categorisation extends the "Triple Bottom Lines" to include social, economic, environmental and institutional dimensions. Semi-structured interviews help identify strategies of actions and solutions of potential problems through a SWOT analysis framework. These tools help the decision-makers maximise the opportunities by using available strengths, avoid weaknesses, and diagnose possible threats in the examined issues. The recommendations formed an integrated action plan to present information on what and how to improve sustainability through tackling each critical factor during IBS development. It can be used as part of the project briefing documents for IBS designers. For validation and finalisation the research deliverables, three case studies were conducted. The research fills a current gap by responding to IBS project scenarios in developing countries. It also provides a balanced view for designers to better understand sustainability potential and prioritize attentions to manage sustainability issues in IBS applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

3D printing (3Dp) has long been used in the manufacturing sector as a way to automate, accelerate production and reduce waste materials. It is able to build a wide variety of objects if the necessary specifications are provided to the printer and no problems are presented by the limited range of materials available. With 3Dp becoming cheaper, more reliable and, as a result, more prevalent in the world at large, it may soon make inroads into the construction industry. Little is known however, of 3Dp in current use the construction industry and its potential for the future and this paper seeks to rectify this situation by providing a review of the relevant literature. In doing this, the three main 3Dp methods of contour crafting, concrete printing and D-shape 3Dp are described which, as opposed to the traditional construction method of cutting materials down to size, deliver only what is needed for completion, vastly reducing waste. Also identified is 3Dp’s potential to enable buildings to be constructed many times faster and with significantly reduced labour costs. In addition, it is clear that construction 3Dp can allow the further inclusion of Building Information Modelling into the construction process - streamlining and improving the scheduling requirements of a project. However, current 3Dp processes are known to be costly, unsuited to large-scale products and conventional design approaches, and have a very limited range of materials that can be used. Moreover, the only successful examples of construction in action to date have occurred in controlled laboratory environments and, as real world trials have yet to be completed, it is yet to be seen whether it can be it equally proficient in practical situations. Key Words: 3D Printing; Contour Crafting; Concrete Printing; D-shape; Building Automation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The anchorages are unparalleled structures only in a suspension bridge, and as main bearing facilities, play an important role in connecting the superstructures and the ground. The tunnel anchorage, as one alternative type of the anchorages, has more advantages over its counterpart, the gravity anchorage. With the tunnel anchorages adopted, not only can surface excavation be reduced to protect the environment, and natural condition of the rock be utilized and potential bearing capacity of surrounding rock be mobilized to save engineering cost, but also the technological predominance of auxiliary engineering measures, such as prestressed concrete, anchoring piles, rock anchors and collar beam between the two separated anchorages, can be easily cooperated to work together harmoniously under the circumstances of poor rock quality. There are plentiful high mountains and deep canyons in west part of China, and long-span bridge construction is inevitably encountered in order to realize leapfrogging development of the transportation infrastructure. Western mountainous areas usually possess the conditions for constructing tunnel anchorages, and therefore, the tunnel anchorages, which are conformed to the conception of resource conservative and sustainable society, extremely have application and popularization value in western underdeveloped region. The scientific and technological problem about the design, construction and operation of tunnel anchorages should be further investigated. Combining the engineering of western tunnel anchorages for the Balinghe Suspension Bridge, this paper probed into the survey method and in-situ test method for tunnel anchorages, scientific rock quality evaluation of surrounding rock to provide reasonable physical and mechanical parameters for design, construction and operation of tunnel anchorages, bearing capacity estimation for tunnel anchorage, deformation prediction of the anchorage-rockmass system, tunnel-anchorage slope stability analysis and the evaluation of excavation stability and degree of safety of the anchorage tunnel. The following outcomes were obtained: 1. Materials of tunnel anchorages of suspension bridge built (and in progress) at home and abroad were systematically sorted out, with the engineering geological condition and geomechanical property of surrounding rock around the anchorage tunnel, the design size of anchorages and the construction method of anchorage tunnel paid more emphasis on, to unveil the internal relationship between the engineering geological conditions of surrounding rock and the design size and axis angle of anchorages and provide references for future design, construction and study of tunnel anchorages. 2. Physical and mechanical parameters were recommended based on three domestic and foreign methods of rock quality evaluation. 3. In-situ tests, adopting the back-thrust method, of two kinds of reduced scale model, 1/30 and 1/20, for the tunnel anchorages were conducted in the declining exploration drift with rock mass at the test depth being the same as surrounding rock around real anchorages, and reliable field rockmass displacement data were acquired. Attenuation relation between the increment of distance from the anchorage and the decrement of rockmass displacement under maximum test load, and influential scope suffered by anchorage load were obtained. 4. Using similarity theory, the magnitude of real anchorage and rockmass displacement under design load and degree of safety of the anchorage system were deduced. Furthermore, inversion analysis to deformation modulus of slightly weathered dolomite rock, the surrounding rock of anchorage tunnel, was performed by the means of numerical simulation. 5. The influential law of the geometrical size to the limit bearing capacity of tunnel anchorage was studied. 6. Based on engineering geological survey data, accounting for the combination of strata layer and adverse discontinuities, the failure patterns of tunnel anchorage slope were divided into three modes: sliding of splay saddle pier slope, superficial-layer slippage, and deep-layer slippage. Using virtual work principle and taking anchorage load in account, the stability of the three kinds of failure patterns were analyzed in detail. 7. The step-by-step excavation of anchorage tunnel, the numerical overload and the staged decrement of rock strength parameters were numerically simulated to evaluate the excavation stability of surrounding rock around anchorage tunnel, the overload performance of tunnel anchorage, and the safety margin of strength parameters of the surrounding rock.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, the concept of a composite performance index, brought from economic and business statistics, has gained popularity in the field of road safety. The construction of the Composite Safety Performance Index (CSPI) involves the following key steps: the selection of the most appropriate indicators to be aggregated and the method used to aggregate them.

Over the last decade, various aggregation methods for estimating the CSPI have been suggested in the literature. However, recent studies indicates that most of these methods suffer from many deficiencies at both the theoretical and operational level; these include the correlation and compensability between indicators, as well as their high “degree of freedom” which enables one to readily manipulate them to produce desired outcomes.

The purpose of this study is to introduce an alternative aggregation method for the estimation of the CSPI, which is free from the aforementioned deficiencies. In contrast with the current aggregation methods, which generally use linear combinations of road safety indicators to estimate a CSPI, the approach advocated in this study is based on non-linear combinations of indicators and can be summarized into the following two main steps: the pairwise comparison of road safety indicators and the development of marginal and composite road safety performance functions. The introduced method has been successfully applied to identify and rank temporal and spatial hotspots for Northern Ireland, using road traffic collision data recorded in the UK STATs19 database. The obtained results highlight the promising features of the proposed approach including its stability and consistency, which enables significantly reduced deficiencies associated with the current aggregation methods. Progressively, the introduced method could evolve into an intelligent support system for road safety assessment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Bahrain International Circuit (BIC) is considered its one of the best international racing car track in terms of technical aspects and architectural quality. Two Formula 1 races have been hosted in the Kingdom of Bahrain, in 2004 and 2005, at BIC. The BIC had recently won the award of the best international racing car circuit. This paper highlights on the elements that contributed to the success of such project starting from the architectural aspects, construction, challenges, tendering process, risk management, the workforce, speed of the construction method, and future prospects for harnessing solar and wind energy for sustainable electrification and production of water for the circuit, i.e. making BIC green and environment-friendly international circuit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although the construction pollution index has been put forward and proved to be an efficient approach to reducing or mitigating pollution level during the construction planning stage, the problem of how to select the best construction plan based on distinguishing the degree of its potential adverse environmental impacts is still a research task. This paper first reviews environmental issues and their characteristics in construction, which are critical factors in evaluating potential adverse impacts of a construction plan. These environmental characteristics are then used to structure two decision models for environmental-conscious construction planning by using an analytic network process (ANP), including a complicated model and a simplified model. The two ANP models are combined and called the EnvironalPlanning system, which is applied to evaluate potential adverse environmental impacts of alternative construction plans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

New construction algorithms for radial basis function (RBF) network modelling are introduced based on the A-optimality and D-optimality experimental design criteria respectively. We utilize new cost functions, based on experimental design criteria, for model selection that simultaneously optimizes model approximation, parameter variance (A-optimality) or model robustness (D-optimality). The proposed approaches are based on the forward orthogonal least-squares (OLS) algorithm, such that the new A-optimality- and D-optimality-based cost functions are constructed on the basis of an orthogonalization process that gains computational advantages and hence maintains the inherent computational efficiency associated with the conventional forward OLS approach. The proposed approach enhances the very popular forward OLS-algorithm-based RBF model construction method since the resultant RBF models are constructed in a manner that the system dynamics approximation capability, model adequacy and robustness are optimized simultaneously. The numerical examples provided show significant improvement based on the D-optimality design criterion, demonstrating that there is significant room for improvement in modelling via the popular RBF neural network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Foundation construction process has been an important key point in a successful construction engineering. The frequency of using diaphragm wall construction method among many deep excavation construction methods in Taiwan is the highest in the world. The traditional view of managing diaphragm wall unit in the sequencing of construction activities is to establish each phase of the sequencing of construction activities by heuristics. However, it conflicts final phase of engineering construction with unit construction and effects planning construction time. In order to avoid this kind of situation, we use management of science in the study of diaphragm wall unit construction to formulate multi-objective combinational optimization problem. Because the characteristic (belong to NP-Complete problem) of problem mathematic model is multi-objective and combining explosive, it is advised that using the 2-type Self-Learning Neural Network (SLNN) to solve the N=12, 24, 36 of diaphragm wall unit in the sequencing of construction activities program problem. In order to compare the liability of the results, this study will use random researching method in comparison with the SLNN. It is found that the testing result of SLNN is superior to random researching method in whether solution-quality or Solving-efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a new sparse model construction method aimed at maximizing a model’s generalisation capability for a large class of linear-in-the-parameters models. The coordinate descent optimization algorithm is employed with a modified l1- penalized least squares cost function in order to estimate a single parameter and its regularization parameter simultaneously based on the leave one out mean square error (LOOMSE). Our original contribution is to derive a closed form of optimal LOOMSE regularization parameter for a single term model, for which we show that the LOOMSE can be analytically computed without actually splitting the data set leading to a very simple parameter estimation method. We then integrate the new results within the coordinate descent optimization algorithm to update model parameters one at the time for linear-in-the-parameters models. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esta dissertação analisa a relação entre agricultores ecologistas organizados em uma associação e mediadores sociais vinculados a uma ONG do Rio Grande do Sul. Parte-se da hipótese de que a construção da simetria pretendida nesta relação encobre interesses sobre os quais não se fala, mas que compõe as bases de uma disputa velada estruturada no espaço social no qual interagem agricultores e mediadores, entre outros agentes. Busca-se, a partir de dados empíricos, problematizar alguns elementos que estão ocultos ou que não são considerados relevantes, exatamente por estarem subjacentes à doxa que configura a relação em questão. Para isso, foram empregados conceitos como espaço social, capital, participação, mediação, interdependência e identidade. Trata-se, portanto, de evidenciar como se processa a relação de poder existente entre estes agentes dotados de volume e estrutura de capital diferenciados e de compreender como são constituídas as identidades do agricultor ecologista e do mediador social que estão envolvidos com esta proposta distinta de se fazer agricultura. Nesse sentido, a trajetória destes grupos, os agentes influentes nessa constituição, as disputas estabelecidas no campo das diferentes propostas de se fazer agricultura e os contextos onde se desenvolvem as relações são algumas das dimensões empíricas que foram consideradas para o desenvolvimento das análises contidas nessa dissertação. Assim, verificou-se que a pretensão, anunciada por certos agentes, de uma horizontalidade entre os agricultores ecologistas e os mediadores sociais é ilusória. A diversidade de interesses e de atuações que os mobilizam ao redor da agricultura ecológica geram disputas e, ao mesmo tempo, uma interdependência entre eles. Porém, a lógica desse jogo social está, em grande medida, determinada pelo agente de maior poder e, ainda que haja variações, são os mediadores sociais que mais produzem interferência no curso desse jogo. Ficou constatado, finalmente, que é nesse cenário de posições e contraposições, ação e reação, que vão se constituindo as fronteiras das identidades desses agentes e a realidade de suas relações.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fatigue is an important problem to be considered if a ferroelectric film is used for non-volatile memory devices. In this phenomena, the remanent polarization and coercive field properties degrades in cycles which increase in hysteresis loops. The reasons have been attributed to different mechanisms such as a large voltage applied on ferroelectric film in every reading process in Ferroelectric Random Access Memory (FeRAM) or memories for digital storage in computer, grain size effects and others. The aim of this work is to investigate the influence of the crystallization kinetics on dielectric and ferroelectric properties of the Pb(Zr0.53Ti0.47)O-3 thin films prepared by an alternative chemical method. Films were crystallized in air on Pt/Ti/SiO2/Si substrates at 700 degrees C for 1 hour, in conventional thermal annealing (CTA), and at 700 degrees C for 1 min and 700 degrees C 5 min, using a rapid thermal annealing (RTA) process. Final films were crack free and presented an average of 750 nm in thickness. Dielectric properties were studied in the frequency range of 100 Hz - 1 MHz. All films showed a dielectric dispersion at low frequency. Ferroelectric properties were measured from hysteresis loops at 10 kHz. The obtained remanent polarization (P-r) and coercive field (E-c) were 3.7 mu C/cm(2) and 71.9 kV/cm respectively for film crystallized by CTA while in films crystallized by RTA these parameters were essentially the same. In the fatigue process, the P, value decreased to 14% from the initial value after 1.3 x 10(9) switching cycles, for film by CTA, while for film crystallized by RTA for 5 min, P, decreased to 47% from initial value after 1.7 x 10(9) switching cycles.