917 resultados para Allograft-rejection
Resumo:
Transcriptomics could contribute significantly to the early and specific diagnosis of rejection episodes by defining 'molecular Banff' signatures. Recently, the description of pathogenesis-based transcript sets offered a new opportunity for objective and quantitative diagnosis. Generating high-quality transcript panels is thus critical to define high-performance diagnostic classifier. In this study, a comparative analysis was performed across four different microarray datasets of heterogeneous sample collections from two published clinical datasets and two own datasets including biopsies for clinical indication, and samples from nonhuman primates. We characterized a common transcriptional profile of 70 genes, defined as acute rejection transcript set (ARTS). ARTS expression is significantly up-regulated in all AR samples as compared with stable allografts or healthy kidneys, and strongly correlates with the severity of Banff AR types. Similarly, ARTS were tested as a classifier in a large collection of 143 independent biopsies recently published by the University of Alberta. Results demonstrate that the 'in silico' approach applied in this study is able to identify a robust and reliable molecular signature for AR, supporting a specific and sensitive molecular diagnostic approach for renal transplant monitoring.
Resumo:
The introduction of cyclosporine A (CyA) into the immunosuppressive therapy has significantly improved the results of heart transplantation (HTX). Its nephrotoxicity and hepatotoxicity, however, often limit the perioperative and postoperative use of this drug. The purpose of this retrospective study was to evaluate the effect of early postoperative CyA blood levels on the incidence of early as well as late cardiac rejection and patients' survival. Between October 1985 and June 1991, HTX was performed in 311 patients. Standard immunosuppression consisted of azathioprine (1-2 mg/kg), prednisolone (0.5 to 0.1 mg/kg) and CyA. Rabbit-antithymocyte-globulin (RATG - 1.5 mg/kg) was administered for the first 4 days postoperatively. Moderate rejection was treated with 3 x 500 mg methylprednisolone, severe rejection with RATG (1.5 mg/kg three times a day). Patients were excluded from this study because of a positive cross-matching, early death unrelated to rejection or alternate forms of immunosuppression (n = 111). Follow-up was complete in 200 patients (mean age 44 +/- 11; 18 female, 182 male; 204,233 patient days) with a total of 5380 biopsies. The cohort was divided into group I (no CyA for day 0 to 2; n = 108) and group II (CyA during day 0 to 2; n = 92) according to the onset of CyA therapy. In 101 patients (group A) the mean CyA blood level was less than 150 ng/ml from day 0 to 14 and in 99 patients more than 150 ng/ml (group B).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Selective inhibition of T cell costimulation using the B7-specific fusion protein CTLA4-Ig has been shown to induce long-term allograft survival in rodents. Antibodies preventing the interaction between CD40 and its T cell-based ligand CD154 (CD40L) have been shown in rodents to act synergistically with CTLA4-Ig. It has thus been hypothesized that these agents might be capable of inducing long-term acceptance of allografted tissues in primates. To test this hypothesis in a relevant preclinical model, CTLA4-Ig and the CD40L-specific monoclonal antibody 5C8 were tested in rhesus monkeys. Both agents effectively inhibited rhesus mixed lymphocyte reactions, but the combination was 100 times more effective than either drug alone. Renal allografts were transplanted into nephectomized rhesus monkeys shown to be disparate at major histocompatibility complex class I and class II loci. Control animals rejected in 5–8 days. Brief induction doses of CTLA4-Ig or 5C8 alone significantly prolonged rejection-free survival (20–98 days). Two of four animals treated with both agents experienced extended (>150 days) rejection-free allograft survival. Two animals treated with 5C8 alone and one animal treated with both 5C8 and CTLA4-Ig experienced late, biopsy-proven rejection, but a repeat course of their induction regimen successfully restored normal graft function. Neither drug affected peripheral T cell or B cell counts. There were no clinically evident side effects or rejections during treatment. We conclude that CTLA4-Ig and 5C8 can both prevent and reverse acute allograft rejection, significantly prolonging the survival of major histocompatibility complex-mismatched renal allografts in primates without the need for chronic immunosuppression.
Resumo:
Blocking CD28-B7 T-cell costimulation by systemic administration of CTLA4Ig, a fusion protein which binds B7 molecules on the surface of antigen-presenting cells, prevents rejection and induces tolerance in experimental acute allograft rejection models. We tested the effect of CTLA4Ig therapy on the process of chronic renal allograft rejection using an established experimental transplantation model. F344 kidneys were transplanted orthotopically into bilaterally nephrectomized LEW recipients. Control animals received low dose cyclosporine for 10 days posttransplantation. Administration of a single injection of CTLA4Ig on day 2 posttransplant alone or in addition to the low dose cyclosporine protocol resulted in improvement of long-term graft survival as compared with controls. More importantly, control recipients which received cyclosporine only developed progressive proteinuria by 8-12 weeks, and morphological evidence of chronic rejection by 16-24 weeks, including widespread transplant arteriosclerosis and focal and segmental glomerulosclerosis, while animals treated with CTLA4Ig alone or in addition to cyclosporine did not. Competitive reverse transcriptase-PCR and immunohistological analysis of allografts at 8, 16, and 24 weeks showed attenuation of lymphocyte and macrophage infiltration and activation in the CTLA4Ig-treated animals, as compared with cyclosporine-alone treated controls. These data confirm that early blockade of the CD28-B7 T-cell costimulatory pathway prevents later development and evolution of chronic renal allograft rejection. Our results indicate that T-cell recognition of alloantigen is a central event in initiating the process of chronic rejection, and that strategies targeted at blocking T-cell costimulation may prove to be a valuable clinical approach to preventing development of the process.
Resumo:
The correct diagnosis of renal allograft rejection may be difficult using only clinical and/or histopathological criteria. Immunological assays should be considered in order to evaluate the phenotype of inflammatory infiltrate in renal allograft biopsies. Immunohistochemical studies were performed to detect mononuclear cells, CD4 and CD8 T lymphocytes, B lymphocytes, macrophages, null cells, and positive cells for interleukin-2 receptors. A total of 41 allograft biopsies classified into three groups were studied: acute cellular rejection (28 biopsies/22 patients), borderline (7 biopsies/5 patients) and control (6 biopsies/6 patients). In the rejection group (RG), increased cellularity was found mainly at the tubulo-interstitial level. Expression of CD8 positive cells was higher in RG when compared to borderline (BG) and control (CG) groups, respectively (0.9 vs. 0.0 vs. 0.35 cells/mm2; p < 0.001). Expression of macrophages was not statistically significant among the three groups (RG = 0.6 vs. BG = 0.2 vs. CG = 0.0 cells/mm2; p < 0.02). In the BG, CD4 + cells predominated (BG = 0.2 vs. RG = 0.05 vs. CG = 0.0 cells/mm2; p < 0.05). Clinically these patients were treated as cases of acute rejection. The numbers and different types of infiltrating cells did not correlate with patient's clinical outcome. Copyright © Informa Healthcare.
Resumo:
This study aimed at investigating associations between monocytes/ macrophages (Mo) infiltration and three important criteria associated with acute antibody-mediated rejection: C4d staining, microcirculation injury, and graft survival time. By quantitative analysis, Mo were counted in peritubular capillaries and in the interstitial compartment (peritubular/interstitial Mo), and they were also identified in glomeruli (glomerular Mo). The study included 47 patients who received renal allograft between 1991 and 2009. Capillaritis and glomerulitis were classified by the Banff scoring system, and C4d and Mo were analyzed by immunohistochemistry. In the quantitative analysis, the mean values of 50 Mo per 10 high-power fields (HPF) and 4 Mo per glomerulus were used as cut-off points for the peritubular/interstitial and glomerular compartments, respectively. Positive C4d cases were associated with the groups of biopsies with a mean value ≥50 Mo per 10 HPF (p = 0.01) and ≥4 Mo per glomerulus (p = 0.02). The group with a mean value ≥4 Mo per glomerulus also showed association with the presence of glomerulitis (p = 0.02). Peritubular/ interstitial Mo did not associate with glomerulitis. Capillaritis did not show association with peritubular/interstitial or glomerular Mo. As regards graft survival, the infiltration of Mo in glomeruli interfered with allograft survival (p = 0.01). The group with a mean value of ≥4 glomerular Mo presented worse survival at the time of the 1-year follow-up. According to the literature, our data showed that infiltration of mononuclear cells was associated with C4d staining, microcirculation injury, and glomerulitis, in particular, and that glomerular macrophages could influence renal allograft survival. Copyright © 2013 Informa Healthcare USA, Inc.
Resumo:
P>Antibody-mediated rejection (AMR) requires specific diagnostic tools and treatment and is associated with lower graft survival. We prospectively screened C4d in pancreas (n = 35, in 27 patients) and kidney (n = 33, in 21 patients) for cause biopsies. Serum amylase and lipase, amylasuria, fasting blood glucose (FBG) and 2-h capillary glucose (CG) were also analysed. We found that 27.3% of kidney biopsies and 43% of pancreatic biopsies showed C4d staining (66.7% and 53.3% diffuse in peritubular and interacinar capillaries respectively). Isolated exocrine dysfunction was the main indication for pancreas biopsy (54.3%) and was followed by both exocrine and endocrine dysfunctions (37.1%) and isolated endocrine dysfunction (8.6%). Laboratorial parameters were comparable between T-cell mediated rejection and AMR: amylase 151.5 vs. 149 U/l (P = 0.075), lipase 1120 vs. 1288.5 U/l (P = 0.83), amylasuria variation 46.5 vs. 61% (P = 0.97), FBG 69 vs. 97 mg/dl (P = 0.20) and 2-h CG maximum 149.5 vs. 197.5 mg/dl (P = 0.49) respectively. Amylasuria values after treatment correlated with pancreas allograft loss (P = 0.015). These data suggest that C4d staining should be routinely investigated when pancreas allograft dysfunction is present because of its high detection rate in cases of rejection.
Resumo:
PCT is a protein that is recognized as an acute marker of inflammation. Previous studies performed in adults who underwent liver or heart transplantation indicated that PCT plasmatic levels help to differentiate between rejection and infection. The objective of this study was to evaluate whether PCT has the same role in liver-transplanted children. Thirty-six patients were studied between the first and the thirtieth post-operative days, and PCT determinations were prospectively performed according to the clinical status of the patient. In the non-complicated patients, PCT measurements performed on the first and second post-operative days revealed a median value of 1.60 ng/mL (mean 5.68 +/- 7.05; range 0.69-18.30). After the fourth day of transplantation, PCT plasma concentrations decreased to a median value of 0.21 ng/mL (mean 0.47 +/- 0.59; range 0.05-2.00; normal values are less than 0.5 ng/mL). In infected patients, PCT plasma levels demonstrated a significant increase, differing from the patients with acute liver rejection whose levels were similar to those of non-complicated patients. In conclusion, we could demonstrate that in the early post-operative period of liver transplantation in children, measuring PCT plasmatic levels might be a useful tool for differentiation between bacterial infection and acute liver rejection.
Resumo:
Background. Despite advances in immunosuppressive therapy in the past decade, allograft rejection remains an important cause of kidney graft failure. Cytokines play a major role in the inflammatory and immune responses that mediate allograft outcomes. Several studies have shown that the production of cytokines varies among individuals. These variations are determined by genetic polymorphisms, most commonly within the regulatory region of cytokine genes. The aim of the present study was to assess the effect of allelic variation on acute rejection episodes (ARE) or chronic allograft nephropathy (CAN) after kidney transplantation. Methods. To determine a possible correlation between the interferon (INF)-gamma +874 polymorphism and kidney allograft outcome, we isolated genomic DNA from 74 patients who underwent isolated kidney allografts and were classified into 2 groups-a rejection and a nonrejection group-for comparison with a control group of 163 healthy subjects. Results. We genotyped INF-gamma +874 polymorphisms in all groups. The transplant group showed a significantly increased homozygous genotype T/T (P = .0118) compared with healthy controls. Similarly, considering only patients with CAN, the homozygous genotype T/T (P = .0067) was significantly increased compared with the healthy controls. The rejection group indicated a significant increased homozygous genotype Tic compared with the control group (P = .0061). Conclusion. Homozygous genotype T/T was associated with increased levels of INF-gamma and greater numbers among the rejection and CAN cohorts.
Resumo:
Epstein–Barr virus (EBV) encephalitis has been reported rarely in the context of solid-organ and bone-marrow transplantation [1]. We report a case of a renal transplant recipient who developed EBV encephalitis following OKT3 therapy for acute allograft rejection. The diagnosis was expedited by the detection of EBV DNA in the cerebrospinal fluid (CSF) by nested polymerase chain reaction (PCR). Moreover, clinical recovery and clearance of CSF EBV DNA appeared to follow the institution of parenteral ganciclovir treatment.
Resumo:
Although immunosuppressive regimens are effective, rejection occurs in up to 50% of patients after orthotopic liver transplantation (OLT), and there is concern about side effects from long-term therapy. Knowledge of clinical and immunogenetic variables may allow tailoring of immunosuppressive therapy to patients according to their potential risks. We studied the association between transforming growth factor-beta, interleukin-10, and tumor necrosis factor alpha (TNF-alpha) gene polymorphisms and graft rejection and renal impairment in 121 white liver transplant recipients. Clinical variables were collected retrospectively, and creatinine clearance was estimated using the formula of Cockcroft and Gault. Biallelic polymorphisms were detected using polymerase chain reaction-based methods. Thirty-seven of 121 patients (30.6%) developed at least 1 episode of rejection. Multivariate analysis showed that Child-Pugh score (P =.001), immune-mediated liver disease (P =.018), normal pre-OLT creatinine clearance (P =.037), and fewer HLA class 1 mismatches (P =.038) were independently associated with rejection, Renal impairment occurred in 80% of patients and was moderate or severe in 39%, Clinical variables independently associated with renal impairment were female sex (P =.001), pre-OLT renal dysfunction (P =.0001), and a diagnosis of viral hepatitis (P =.0008), There was a significant difference in the frequency of TNF-alpha -308 alleles among the primary liver diseases. After adjustment for potential confounders and a Bonferroni correction, the association between the TNF-alpha -308 polymorphism and graft rejection approached significance (P =.06). Recipient cytokine genotypes do not have a major independent role in graft rejection or renal impairment after OLT, Additional studies of immunogenetic factors require analysis of large numbers of patients with appropriate phenotypic information to avoid population stratification, which may lead to inappropriate conclusions.
Resumo:
Background: Experimental data have suggested that adoptive transfer of CD4+CD25+Foxp3+ regulatory T cells (Tregs), capable of controlling immune responses to specifi c auto- or alloantigens, could be used as a therapeutic strategy to promote specifi c tolerance in T-cell mediated diseases and in organ transplantation (Tx). However, before advocating the application of immunotherapy with Tregs in Tx, we need to improve our understanding of their in vivo homeostasis, traffi cking pattern and effector function in response to alloantigens. Methods : Donor-antigen specifi c murine Tregs were generated and characterized in vitro following our described protocols. Using an adoptive transfer and skin allotransplantation model, we have analyzed the in vivo expansion and homing of fl uorescent-labeled effector T cells (Teff) and Tregs, at different time-points after Tx, using fl ow-cytometry as well as fl uorescence microscopy techniques. Results: Tregs expressed CD62L, CCR7 and CD103 allowing their homing into lymphoid and non-lymphoid tissues (gut, skin) after intravenous injection. While hyporesponsive to TCR stimulation in vitro, transferred Tregs survived, migrated to secondary lymphoid organs and preferentially expanded within the allograft draining lymph nodes. Furthermore, Foxp3+ cells could be detected inside the allograft as early as day 3-5 after Tx. At a much later time-point (day 60 after Tx), graft-infi ltrating Foxp3+ cells were also detectable in tolerant recipients. When transferred alone, CD4+CD25- Teff cells expanded within secondary lymphoid organs and infi ltrated the allograft by day 3-5 after Tx. The co-transfer of Tregs limited the expansion of alloreactive Teff cells as well as their recruitment into the allograft. The promotion of graft survival observed in the presence of Tregs was in part mediated by the inhibition of the production of effector cytokines by CD4+CD25- T cells. Conclusion: Taken together, our results suggest that the suppression of allograft rejection and the induction of Tx tolerance are in part dependant on the alloantigendriven homing and expansion of Tregs. Thus, the appropriate localization of Tregs may be critical for their suppressive function in vivo.
Resumo:
BACKGROUND: The CD28 homologue programmed death-1 (PD-1) and its ligands, PD-L1 and PD-L2 (which are homologous to B7), constitute an inhibitory pathway of T cell costimulation. The PD-1 pathway is of interest for immune-mediated diseases given that PD-1-deficient mice develop autoimmune diseases. We have evaluated the effect of local overexpression of a PD-L1.Ig fusion protein on cardiac allograft survival. METHODS: Adenovirus-mediated PD-L1.Ig gene transfer was performed in F344 rat donor hearts placed in the abdominal position in Lewis recipients. Inflammatory cell infiltrates in the grafts were assessed by immunohistochemistry. RESULTS: Allografts transduced with the PD-L1.Ig gene survived for longer periods of time compared with those receiving noncoding adenovirus or virus dilution buffer alone: median survival time (MST), 17 (range: 16-20) days vs. 11 (8-14) and 9 (8-13) days, respectively (P < 0.001). PD-L1.Ig gene transfer combined with a subtherapeutic regimen of cyclosporin A (CsA) was superior to CsA alone: MST, 25 (15-42) vs. 15 (13-19) days (P < 0.05). PD-L1.Ig gene transfer was associated with decreased numbers of CD4 cells and monocytes/macrophages infiltrating the graft (P < 0.05). CONCLUSIONS: Localized PD-L1.Ig expression in donor hearts attenuates acute allograft rejection in a rat model. The effect is additive to that of a subtherapeutic regimen of CsA. These results suggest that targeting of PD-1 by gene therapy may inhibit acute cardiac allograft rejection in vivo.