999 resultados para Alkenone, d13C


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the primary prerequisites for the application of organic proxies is that they should not be substantially affected by diagenesis. However, studies have shown that oxic degradation of biomarker lipids can affect their relative distribution. We tested the diagenetic stability of the UK'37 and TEX86 palaeothermometers upon long term oxygen exposure. For this purpose, we studied the distributions of alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) in different sections of turbidites at the Madeira Abyssal Plain (MAP) that experienced different degrees of oxygen exposure. Sediments were deposited anoxically on the shelf and then transported by turbidity currents to the MAP, which has oxic bottom water. This resulted in partial degradation of the turbidite organic matter as a result of long term exposure to oxic bottom water. Concentrations of GDGTs and alkenones were reduced by one to two orders of magnitude in the oxidized parts of the turbidites compared to the unoxidized parts, indicating substantial degradation. High-resolution analysis of the Pleistocene F-turbidite showed that the UK'37 index of long chain alkenones increased only slightly (0.01, corresponding to <0.5 °C) in the oxidized part of the turbidite, suggesting minor preferential degradation of the C37:3 alkenone, in agreement with previous studies. TEX86 values showed a small increase (0.02, corresponding to ~2 °C) in the F-turbidite, like UK'37 , while for other Pliocene/Miocene turbidites it either remained unchanged or decreased substantially (up to 0.06, corresponding to ~6 °C). Previous observations showed that the BIT index, a proxy for the contribution of soil organic matter to total organic carbon, was always substantially higher in the oxidized part in all the turbidites, as a result of preferential degradation of marine-derived GDGTs. This relative increase in soil-derived GDGTs affects TEX86, as the isoprenoid GDGT distribution on the continent can be quite different from that in the marine environment. Our results indicate that the organic proxies are affected by long term oxic degradation to different extents; this should be taken into account when applying these proxies in palaeoceanographic studies of sediments which have been exposed to prolonged oxic degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we present orbitally-resolved records of terrestrial higher plant leaf wax input to the North Atlantic over the last 3.5 Ma, based on the accumulation of long-chain n-alkanes and n-alkanl-1-ols at IODP Site U1313. These lipids are a major component of dust, even in remote ocean areas, and have a predominantly aeolian origin in distal marine sediments. Our results demonstrate that around 2.7 million years ago (Ma), coinciding with the intensification of the Northern Hemisphere glaciation (NHG), the aeolian input of terrestrial material to the North Atlantic increased drastically. Since then, during every glacial the aeolian input of higher plant material was up to 30 times higher than during interglacials. The close correspondence between aeolian input to the North Atlantic and other dust records indicates a globally uniform response of dust sources to Quaternary climate variability, although the amplitude of variation differs among areas. We argue that the increased aeolian input at Site U1313 during glacials is predominantly related to the episodic appearance of continental ice sheets in North America and the associated strengthening of glaciogenic dust sources. Evolutional spectral analyses of the n-alkane records were therefore used to determine the dominant astronomical forcing in North American ice sheet advances. These results demonstrate that during the early Pleistocene North American ice sheet dynamics responded predominantly to variations in obliquity (41 ka), which argues against previous suggestions of precession-related variations in Northern Hemisphere ice sheets during the early Pleistocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upwelling intensity in the South China Sea has changed over glacial-interglacial cycles in response to orbital-scale changes in the East Asian Monsoon. Here, we evaluate new multi-proxy records of two sediment cores from the north-eastern South China Sea to uncover millennial-scale changes in winter monsoondriven upwelling over glacial Terminations I and II. On the basis of U/Th-based speleothem chronology, we compare these changes with sediment records of summer monsoondriven upwelling east of South Vietnam. Ocean upwelling is traced by reduced (UK'37-based) temperature and increased nutrient and productivity estimates of sea surface water (d13C on planktic foraminifera, accumulation rates of alkenones, chlorins, and total organic carbon). Accordingly, strong winter upwelling occurred north-west of Luzon (Philippines) during late Marine Isotope Stage 6.2, Heinrich (HS) and Greenland stadials (GS) HS-11, GS-26, GS-25, HS-1, and the Younger Dryas. During these stadials, summer upwelling decreased off South Vietnam and sea surface salinity reached a maximum suggesting a drop in monsoon rains, concurrent with speleothem records of aridity in China. In harmony with a stadial-to-interstadial see-saw pattern, winter upwelling off Luzon in turn was weak during interstadials, in particular those of glacial Terminations I and II, when summer upwelling culminated east of South Vietnam. Most likely, this upwelling terminated widespread deep-water stratification, coeval with the deglacial rise in atmospheric CO2. Yet, a synchronous maximum in precipitation fostered estuarine overturning circulation in the South China Sea, in particular as long as the Borneo Strait was closed when sea level dropped below -40 m.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a permanent, stable ice sheet in East Antarctica happened during the middle Miocene, about 14 million years (Myr) ago. The middle Miocene therefore represents one of the distinct phases of rapid change in the transition from the "greenhouse" of the early Eocene to the "icehouse" of the present day. Carbonate carbon isotope records of the period immediately following the main stage of ice sheet development reveal a major perturbation in the carbon system, represented by the positive d13C excursion known as carbon maximum 6 ("M6"), which has traditionally been interpreted as reflecting increased burial of organic matter and atmospheric pCO2 drawdown. More recently, it has been suggested that the d13C excursion records a negative feedback resulting from the reduction of silicate weathering and an increase in atmospheric pCO2. Here we present high-resolution multi-proxy (alkenone carbon and foraminiferal boron isotope) records of atmospheric carbon dioxide and sea surface temperature across CM6. Similar to previously published records spanning this interval, our records document a world of generally low (~300 ppm) atmospheric pCO2 at a time generally accepted to be much warmer than today. Crucially, they also reveal a pCO2 decrease with associated cooling, which demonstrates that the carbon burial hypothesis for CM6 is feasible and could have acted as a positive feedback on global cooling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although long chain alkenones (LCKs) occur widely in lacustrine sediments, their origin is not clear. Here, we report a lacustrine source, the non-calcifying species Chrysotila lamellosa Anand (Haptophyceae), collected and isolated from an inland saline water body, Lake Xiarinur (Inner Mongolia, China). Its alketione pattern is similar to those of coastal marine strains of C lamellosa,but the relationship between U-37(K') index and culture temperature for the lacustrine species is quite different from that of the coastal species. A significant feature of the alkenones in this strain of C lamellosa is a lack of C-38 methyl alkenones, which might be used to distinguish the species from the marine haptophyte species Emiliania huxleyi and Gephyrocapsa oceanica. The higher C-38 tetraunsaturated compound abundance might be another important feature for distinguishing the C lamellosa alkenone producer from the coastal species Isochrysis galbana. This alkenone distribution pattern has been detected in many lakes, which suggests that C lamellosa or a closely related species might be a very common alkenone precursor in lacustrine systems. We examined U-37(K') and U-37(K) values for C lamellosa as a function of culture temperature in a batch culture experiment. The calibration for U-37(K') vs. culture temperature (T) was U-37(K') = 0.0011 x T-2 - 0.0157 x T + 0.1057(n = 14, r(2) = 0.99) from 10 degrees C to 22 degrees C or U-37(K') = 0.0257 x T - 0.2608(n = 9, r(2) = 0.97) from 14 degrees C to 22 degrees C. U-37(K) vs. culture temperature was U-37(K) = 0 0377 x T - 0.5992(n = 14, r(2) = 0.98) from 10 degrees C to 22 degrees C. Our experiments show that the alkenone unsaturation index (U-37(K')) is strongly controlled by culture temperature and can be used for palaeoclimate reconstruction. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined near-surface, late Holocene deep-sea sediments at nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) along the Southwest African continental margin. Contents, distribution patterns and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) are indicators of land plant vegetation of different biosynthetic types, which can be correlated with concentrations and distributions of pollen taxa in the same sediments. Calculated clusters of wind trajectories and satellite Aerosol Index imagery afford information on the source areas for the lipids and pollen on land and their transport pathways to the ocean sites. This multidisciplinary approach on an almost continental scale provides clear evidence of latitudinal differences in lipid and pollen composition paralleling the major phytogeographic zonations on the adjacent continent. Dust and smoke aerosols are mainly derived from the western and central South African hinterland dominated by deserts, semi-deserts and savannah regions rich in C4 and CAM plants. The northern sites (Congo Fan area and northern Angola Basin), which get most of their terrestrial material from the Congo Basin and the Angolan highlands, may also receive some material from the Chad region. Very little aerosol from the African continent is transported to the most southerly sites in the Cape Basin. As can be expected from the present position of the phytogeographic zones, the carbon isotopic signatures of the n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. The results of the study suggest that this combination of pollen data and compound-specific isotope geochemical proxies can be effectively applied in the reconstruction of past continental phytogeographic developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The early Late Pliocene (3.6 to ~3.0 million years ago) is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS) M2 interrupted this phase of global warmth ~3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Our geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current (NAC) and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the Greenland ice sheet during MIS M2, despite near-modern atmospheric CO2 concentrations. Before and after MIS M2, heat transport via the NAC was crucial in maintaining warm climates comparable to those predicted for the end of this century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the reconstructed pCO2 data from Tree ring cellulose d13C data with estimation errors for 10 sites (location given below) by a geochemical model as given in the publication by Trina Bose, Supriyo Chakraborty, Hemant Borgaonkar, Saikat Sengupta. This data was generated in Stable Isotope Laboratory, Indian Institute of Tropical Meteorology, Pune - 411008, India

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present and examine a multi-sensor global compilation of mid-Holocene (MH) sea surface temperatures (SST), based on Mg/Ca and alkenone palaeothermometry and reconstructions obtained using planktonic foraminifera and organic-walled dinoflagellate cyst census counts. We assess the uncertainties originating from using different methodologies and evaluate the potential of MH SST reconstructions as a benchmark for climate-model simulations. The comparison between different analytical approaches (time frame, baseline climate) shows the choice of time window for the MH has a negligible effect on the reconstructed SST pattern, but the choice of baseline climate affects both the magnitude and spatial pattern of the reconstructed SSTs. Comparison of the SST reconstructions made using different sensors shows significant discrepancies at a regional scale, with uncertainties often exceeding the reconstructed SST anomaly. Apparent patterns in SST may largely be a reflection of the use of different sensors in different regions. Overall, the uncertainties associated with the SST reconstructions are generally larger than the MH anomalies. Thus, the SST data currently available cannot serve as a target for benchmarking model simulations.