385 resultados para Alien invaders
Resumo:
We describe a novel dissimilarity framework to analyze spatial patterns of species diversity and illustrate it with alien plant invasions in Northern Portugal. We used this framework to test the hypothesis that patterns of alien invasive plant species richness and composition are differently affected by differences in climate, land use and landscape connectivity (i.e. Geographic distance as a proxy and vectorial objects that facilitate dispersal such as roads and rivers) between pairs of localities at the regional scale. We further evaluated possible effects of plant life strategies (Grime's C-S-R) and residence time. Each locality consisted of a 1 km(2) landscape mosaic in which all alien invasive species were recorded by visiting all habitat types. Multi-model inference revealed that dissimilarity in species richness is more influenced by environmental distance (particularly climate), whereas geographic distance (proxies for dispersal limitations) is more important to explain dissimilarity in species composition, with a prevailing role for ecotones and roads. However, only minor differences were found in the responses of the three C-S-R strategies. Some effect of residence time was found, but only for dissimilarity in species richness. Our results also indicated that environmental conditions (e.g. climate conditions) limit the number of alien species invading a given site, but that the presence of dispersal corridors determines the paths of invasion and therefore the pool of species reaching each site. As geographic distances (e.g. ecotones and roads) tend to explain invasion at our regional scale highlights the need to consider the management of alien invasions in the context of integrated landscape planning. Alien species management should include (but not be limited to) the mitigation of dispersal pathways along linear infrastructures. Our results therefore highlight potentially useful applications of the novel multimodel framework to the anticipation and management of plant invasions. (C) 2013 Elsevier GmbH. All rights reserved.
Resumo:
Senecio pterophorus DC. is an erect, semilignose shrub (fig. 1) which grows up to 2 m high. Is a chamaephyte basipetal branch-shedder (ORSHAN, Plant pheno-morphological studies in Mediterranean type ecosystems: 210-211. 1989) whose new branches appear below inflorescences but not from the lower parts of the plant. Leaves lanceolate. Stems are annual and develop at their apex a great number of small (up to 15 mm in diameter) yellow capitula which are grouped in a corymbose-paniculated inflorescence (HARVEY & SONDER, Flora Capensis: Cape Colony, Caffraria & Port Natal 3: 386.1865).
Resumo:
Webber et al. take a critical view of our findings that niche expansions are rare in plant invaders, arguing mainly that we did not include nonanalog climates in our analyses. Yet, their concerns include misunderstandings and go beyond the scope of our study, which was purposely restricted to analog climates. We further explain why our results remain robust to other factors of niche dynamics in the native range. We conclude that the implications of our findings remain valid for projections of niche models in analog climates and that projections in nonanalog climates should be undertaken with care.
Resumo:
Nota sobre les conseqüències de la invasió del mol·lusc d'aigua dolça, Anodonta woodiana, a la Península Ibèrica
Resumo:
Ecosystems are complex systems and changing one of their components can alter their whole functioning. Decomposition and biodiversity are two factors that play a role in this stability, and it is vital to study how these two factors are interrelated and how other factors, whether of human origin or not, can affect them. This study has tested different hypotheses regarding the effects of pesticides and invasive species on the biodiversity of the soil fauna and litter decomposition rate. Decomposition was measured using the litterbags technique. Our results indicate that pesticides had a negative effect on decomposition whereas invasive species increased decomposition rate. At the same time, the diversity of the soil biota was unaffected by either factor. These results allow us to better understand the response of important ecosystem functions to human‐induced alterations, in order to mitigate harmful effects or restore them wherever necessary.
Resumo:
Georgia is known for its extraordinary rich biodiversity of plants, which may now be threatened due to the spread of invasive alien plants (IAP). We aimed to identify (i) the most prominent IAP out of 9 selected potentially invasive and harmful IAP IAP by predicting thetheir distribution of 9 selected IAP under current and future climate conditions in Georgia as well as in its 43 Protected Areas, as a proxy for areas of high conservation value and (ii) the Protected Areas most at risk due to these IAP. We used species distribution models based on 6 climate variables and then filtered the obtained distributions based on maps of soil and vegetation types, and on recorded occurrences, resulting into the predicted ecological distribution of the 9 IAP's at a resolution of 1km2. We foundOur habitat suitability analysis showed that Ambrosia artemisiifolia, (24% and 40%) Robinia pseudoacaia (14% and 19%) and Ailanthus altissima (9% and 11%) have the largest potential distribution are the most abundant (predicted % area covered)d) IAP, with Ailanthus altissima the potentially most increasing one over the next fifty years (from 9% to 13% and from 11% to 25%), for Georgia and the Protected Areas, respectively. Furthermore, our results show indicate two areas in Georgia that are under specifically high threat, i.e. the area around Tbilisi and an area in the western part of Georgia (Adjara), both at lower altitudes. Our procedure to identify areas of high conservation value most at risk by IAP has been applied for the first time. It will help national authorities in prioritizing their measures to protect Georgia's outstanding biodiversity from the negative impact of IAP.
Resumo:
The advent of simple and affordable tools for molecular identification of novel insect invaders and assessment of population diversity has changed the face of invasion biology in recent years. The widespread application of these tools has brought with it an emerging understanding that patterns in biogeography, introduction history and subsequent movement and spread of many invasive alien insects are far more complex than previously thought. We reviewed the literature and found that for a number of invasive insects, there is strong and growing evidence that multiple introductions, complex global movement, and population admixture in the invaded range are commonplace. Additionally, historical paradigms related to species and strain identities and origins of common invaders are in many cases being challenged. This has major consequences for our understanding of basic biology and ecology of invasive insects and impacts quarantine, management and biocontrol programs. In addition, we found that founder effects rarely limit fitness in invasive insects and may benefit populations (by purging harmful alleles or increasing additive genetic variance). Also, while phenotypic plasticity appears important post-establishment, genetic diversity in invasive insects is often higher than expected and increases over time via multiple introductions. Further, connectivity among disjunct regions of global invasive ranges is generally far higher than expected and is often asymmetric, with some populations contributing disproportionately to global spread. We argue that the role of connectivity in driving the ecology and evolution of introduced species with multiple invasive ranges has been historically underestimated and that such species are often best understood in a global context.
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Abarca el período de seiscientos años, en los que las islas Británicas sufrieron las sucesivas invasiones de sajones, vikingos y normandos, que dejaron unas huellas que perduran hasta hoy en la cultura, idioma y gobierno de Inglaterra, Escocia, Gales e Irlanda. Este contenido se adapta a las pruebas de evaluación que realiza el organismo Oxford Cambridge and RSA Examinations (OCR) para alcanzar el título de General Certificate Secondary Education (GCSE) en historia. Se completa con un material online de apoyo al profesorado.
Resumo:
Biosecurity is a great challenge to policy-makers globally. Biosecurity policies aim to either prevent invasions before they occur or to eradicate and/or effectively manage the invasive species and diseases once an invasion has occurred. Such policies have traditionally been directed towards professional producers in natural resource based sectors, including agriculture. Given the wide scope of issues threatened by invasive species and diseases, it is important to account for several types of stakeholders that are involved. We investigate the problem of an invasive insect pest feeding on an agricultural crop with heterogeneous producers: profit-oriented professional farmers and utility-oriented hobby farmers. We start from an ecological-economic model conceptually similar to the one developed by Eiswerth and Johnson [Eiswerth, M.E. and Johnson, W.S., 2002. Managing nonindigenous invasive species: insights from dynamic analysis. Environmental and Resource Economics 23, 319-342.] and extend it in three ways. First, we make explicit the relationship between the invaded state carrying capacity and farmers' planting decisions. Second, we add another producer type into the framework and hence account for the existence of both professional and hobby fanners. Third, we provide a theoretical contribution by discussing two alternative types of equilibria. We also apply the model to an empirical case to extract a number of stylised facts and in particular to assess: a) under which circumstances the invasion is likely to be not controllable; and b) how extending control policies to hobby farmers could affect both types of producers. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Global change may substantially affect biodiversity and ecosystem functioning but little is known about its effects on essential biotic interactions. Since different environmental drivers rarely act in isolation it is important to consider interactive effects. Here, we focus on how two key drivers of anthropogenic environmental change, climate change and the introduction of alien species, affect plant–pollinator interactions. Based on a literature survey we identify climatically sensitive aspects of species interactions, assess potential effects of climate change on these mechanisms, and derive hypotheses that may form the basis of future research. We find that both climate change and alien species will ultimately lead to the creation of novel communities. In these communities certain interactions may no longer occur while there will also be potential for the emergence of new relationships. Alien species can both partly compensate for the often negative effects of climate change but also amplify them in some cases. Since potential positive effects are often restricted to generalist interactions among species, climate change and alien species in combination can result in significant threats to more specialist interactions involving native species.