895 resultados para Algoritmos heurísticos
Resumo:
Multi-objective problems may have many optimal solutions, which together form the Pareto optimal set. A class of heuristic algorithms for those problems, in this work called optimizers, produces approximations of this optimal set. The approximation set kept by the optmizer may be limited or unlimited. The benefit of using an unlimited archive is to guarantee that all the nondominated solutions generated in the process will be saved. However, due to the large number of solutions that can be generated, to keep an archive and compare frequently new solutions to the stored ones may demand a high computational cost. The alternative is to use a limited archive. The problem that emerges from this situation is the need of discarding nondominated solutions when the archive is full. Some techniques were proposed to handle this problem, but investigations show that none of them can surely prevent the deterioration of the archives. This work investigates a technique to be used together with the previously proposed ideas in the literature to deal with limited archives. The technique consists on keeping discarded solutions in a secondary archive, and periodically recycle these solutions, bringing them back to the optimization. Three methods of recycling are presented. In order to verify if these ideas are capable to improve the archive content during the optimization, they were implemented together with other techniques from the literature. An computational experiment with NSGA-II, SPEA2, PAES, MOEA/D and NSGA-III algorithms, applied to many classes of problems is presented. The potential and the difficulties of the proposed techniques are evaluated based on statistical tests.
Resumo:
Multi-objective problems may have many optimal solutions, which together form the Pareto optimal set. A class of heuristic algorithms for those problems, in this work called optimizers, produces approximations of this optimal set. The approximation set kept by the optmizer may be limited or unlimited. The benefit of using an unlimited archive is to guarantee that all the nondominated solutions generated in the process will be saved. However, due to the large number of solutions that can be generated, to keep an archive and compare frequently new solutions to the stored ones may demand a high computational cost. The alternative is to use a limited archive. The problem that emerges from this situation is the need of discarding nondominated solutions when the archive is full. Some techniques were proposed to handle this problem, but investigations show that none of them can surely prevent the deterioration of the archives. This work investigates a technique to be used together with the previously proposed ideas in the literature to deal with limited archives. The technique consists on keeping discarded solutions in a secondary archive, and periodically recycle these solutions, bringing them back to the optimization. Three methods of recycling are presented. In order to verify if these ideas are capable to improve the archive content during the optimization, they were implemented together with other techniques from the literature. An computational experiment with NSGA-II, SPEA2, PAES, MOEA/D and NSGA-III algorithms, applied to many classes of problems is presented. The potential and the difficulties of the proposed techniques are evaluated based on statistical tests.
Resumo:
Atualmente o sector industrial está inserido num mercado cada vez mais competitivo, onde é exigida uma estratégia empresarial que possa garantir a sua permanência e destaque no atual mercado. Por esta razão, um planeamento e controlo da produção adequado torna-se essencial para o bom funcionamento de uma empresa. Através destes sistemas é possível atuar de forma positiva na produção, rentabilizando-se o sector produtivo da empresa que contribui para o aumento da qualidade de serviço e também para o crescimento económico da empresa. Com um planeamento da produção adequado, uma organização dispondo das mesmas capacidades, é capaz de produzir quantidades iguais num menor intervalo de tempo. Por outro lado, um controlo da produção preciso é imprescindível para o fornecimento da informação correta quando necessária. No sentido de otimização, uma empresa apresentou algumas sugestões de melhoria a nível do planeamento e controlo da produção. Este trabalho surge assim com o intuito de dar resposta às propostas apresentadas. Para tal, no desenvolvimento desta dissertação, criou-se uma ferramenta dotada de dois algoritmos e um sistema de controlo para aquisição de informação de forma automatizada. Em suma, o sistema proposto apresenta a capacidade de construção de boas soluções para o planeamento, conciliada com um sistema de aquisição de dados bastante prático e e caz. Mantendo sempre a exibilidade necessária para um sistema deste género.
Resumo:
The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.
Resumo:
The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.
Resumo:
The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.
Resumo:
131 p.: graf.
Resumo:
En este artículo se plantea la resolución de un problema de Investigación Operativa utilizando PHPSimplex (herramienta online de resolución de problemas de optimización utilizando el método Simplex), Solver de Microsoft Excel y un prototipo híbrido que combina las teorías de los Algoritmos Genéticos con una técnica heurística de búsqueda local. La hibridación de estas dos técnicas es conocida como Algoritmo Memético. Este prototipo será capaz de resolver problemas de Optimización con función de maximización o minimización conocida, superando las restricciones que se planteen. Los tres métodos conseguirán buenos resultados ante problemas sencillos de Investigación Operativa, sin embargo, se propone otro problema en el cual el Algoritmo Memético y la herramienta Solver de Microsoft Excel, alcanzarán la solución óptima. La resolución del problema utilizando PHPSimplex resultará inviable. El objetivo, además de resolver el problema propuesto, es comparar cómo se comportan los tres métodos anteriormente citados ante el problema y cómo afrontan las dificultades que éste presenta. Además, este artículo pretende dar a conocer diferentes técnicas de apoyo a la toma de decisiones, con la intención de que se utilicen cada vez más en el entorno empresarial sustentando, de esta manera, las decisiones mediante la matemática o la Inteligencia Artificial y no basándose únicamente en la experiencia.
Resumo:
Con este proyecto hemos querido proporcionar un conjunto de recursos útiles para la impartición de un curso de Swarm Intelligence enfocado a la Particle Swarm Optimization (PSO). Estos recursos constan de una aplicación en NetLogo para poder experimentar, ejecutar y visualizar los diferentes modelos de la PSO, un review de la Swarm Intelligence profundizando en la PSO y una ontología de PSO que incluye los recursos bibliográficos necesarios para la investigación y la escritura de artículos.
Resumo:
Esta dissertação tem como objetivo aplicar um algoritmo genético (GA) ao projeto de filtros FIR com coeficientes quantizados representados em somas de potências de dois com sinal (SPT). Os filtros FIR apresentam configurações que permitem a obtenção de fase linear, atributo desejado em diversas aplicações que necessitam de atraso de grupo constante. A representação SPT, de fácil implementação em circuitos, foi discutida e uma comparação das representações SPT mínimas e canônicas foi feita, baseada no potencial de redução de operações e na variedade de valores representáveis. O GA é aplicado na otimização dos coeficientes SPTs do filtro, para que este cumpra as suas especificações de projeto. Foram feitas análises sobre o efeito que diversos parâmetros do GA como a intensidade de seleção, tamanho das populações, cruzamento, mutação, entre outros, têm no processo de otimização. Foi proposto um novo cruzamento que produz a recombinação dos coeficientes e que obteve bons resultados. Aplicou-se o algoritmo obtido na produção de filtros dos tipos passa-baixas, passa-altas, passa-faixas e rejeita-faixas.
Resumo:
Quantum Computing is a relatively modern field which simulates quantum computation conditions. Moreover, it can be used to estimate which quasiparticles would endure better in a quantum environment. Topological Quantum Computing (TQC) is an approximation for reducing the quantum decoherence problem1, which is responsible for error appearance in the representation of information. This project tackles specific instances of TQC problems using MOEAs (Multi-objective Optimization Evolutionary Algorithms). A MOEA is a type of algorithm which will optimize two or more objectives of a problem simultaneously, using a population based approach. We have implemented MOEAs that use probabilistic procedures found in EDAs (Estimation of Distribution Algorithms), since in general, EDAs have found better solutions than ordinary EAs (Evolutionary Algorithms), even though they are more costly. Both, EDAs and MOEAs are population-based algorithms. The objective of this project was to use a multi-objective approach in order to find good solutions for several instances of a TQC problem. In particular, the objectives considered in the project were the error approximation and the length of a solution. The tool we used to solve the instances of the problem was the multi-objective framework PISA. Because PISA has not too much documentation available, we had to go through a process of reverse-engineering of the framework to understand its modules and the way they communicate with each other. Once its functioning was understood, we began working on a module dedicated to the braid problem. Finally, we submitted this module to an exhaustive experimentation phase and collected results.
Resumo:
Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução de escoamentos de fluidos newtonianos incompressíveis, baseado no método de partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente, duas estratégias são utilizadas na determinação do campo de pressões de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH), onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação do campo de pressões. A segunda, emprega o Método da Projeção e o campo de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH). A fim de validar os métodos iterativos e o código computacional, foram simulados dois problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento no interior de uma cavidade com a parede superior posta em movimento, também foi considerado. Na resolução deste problema foi utilizado o reposicionamento periódico de partículas e partículas fantasmas.
Resumo:
A engenharia geotécnica é uma das grandes áreas da engenharia civil que estuda a interação entre as construções realizadas pelo homem ou de fenômenos naturais com o ambiente geológico, que na grande maioria das vezes trata-se de solos parcialmente saturados. Neste sentido, o desempenho de obras como estabilização, contenção de barragens, muros de contenção, fundações e estradas estão condicionados a uma correta predição do fluxo de água no interior dos solos. Porém, como a área das regiões a serem estudas com relação à predição do fluxo de água são comumente da ordem de quilômetros quadrados, as soluções dos modelos matemáticos exigem malhas computacionais de grandes proporções, ocasionando sérias limitações associadas aos requisitos de memória computacional e tempo de processamento. A fim de contornar estas limitações, métodos numéricos eficientes devem ser empregados na solução do problema em análise. Portanto, métodos iterativos para solução de sistemas não lineares e lineares esparsos de grande porte devem ser utilizados neste tipo de aplicação. Em suma, visto a relevância do tema, esta pesquisa aproximou uma solução para a equação diferencial parcial de Richards pelo método dos volumes finitos em duas dimensões, empregando o método de Picard e Newton com maior eficiência computacional. Para tanto, foram utilizadas técnicas iterativas de resolução de sistemas lineares baseados no espaço de Krylov com matrizes pré-condicionadoras com a biblioteca numérica Portable, Extensible Toolkit for Scientific Computation (PETSc). Os resultados indicam que quando se resolve a equação de Richards considerando-se o método de PICARD-KRYLOV, não importando o modelo de avaliação do solo, a melhor combinação para resolução dos sistemas lineares é o método dos gradientes biconjugados estabilizado mais o pré-condicionador SOR. Por outro lado, quando se utiliza as equações de van Genuchten deve ser optar pela combinação do método dos gradientes conjugados em conjunto com pré-condicionador SOR. Quando se adota o método de NEWTON-KRYLOV, o método gradientes biconjugados estabilizado é o mais eficiente na resolução do sistema linear do passo de Newton, com relação ao pré-condicionador deve-se dar preferência ao bloco Jacobi. Por fim, há evidências que apontam que o método PICARD-KRYLOV pode ser mais vantajoso que o método de NEWTON-KRYLOV, quando empregados na resolução da equação diferencial parcial de Richards.