999 resultados para Algoritmos de Ziff e Neuman
Introdução ao estudo da paralelização de algoritmos de planeamento operacional com métodos genéticos
Resumo:
Tese de mestrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 199
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
PTDC/EME–TME/66207/2006 e POSC/EEA-SRI/55386/2004
Resumo:
Dissertação de Mestrado
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
A procura de padrões nos dados de modo a formar grupos é conhecida como aglomeração de dados ou clustering, sendo uma das tarefas mais realizadas em mineração de dados e reconhecimento de padrões. Nesta dissertação é abordado o conceito de entropia e são usados algoritmos com critérios entrópicos para fazer clustering em dados biomédicos. O uso da entropia para efetuar clustering é relativamente recente e surge numa tentativa da utilização da capacidade que a entropia possui de extrair da distribuição dos dados informação de ordem superior, para usá-la como o critério na formação de grupos (clusters) ou então para complementar/melhorar algoritmos existentes, numa busca de obtenção de melhores resultados. Alguns trabalhos envolvendo o uso de algoritmos baseados em critérios entrópicos demonstraram resultados positivos na análise de dados reais. Neste trabalho, exploraram-se alguns algoritmos baseados em critérios entrópicos e a sua aplicabilidade a dados biomédicos, numa tentativa de avaliar a adequação destes algoritmos a este tipo de dados. Os resultados dos algoritmos testados são comparados com os obtidos por outros algoritmos mais “convencionais" como o k-médias, os algoritmos de spectral clustering e um algoritmo baseado em densidade.
Resumo:
Mestrado em Computação e Instrumentação Médica
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações
Resumo:
Apresenta-se nesta tese uma revisão da literatura sobre a modelação de semicondutores de potência baseada na física e posterior análise de desempenho de dois métodos estocásticos, Particle Swarm Optimizaton (PSO) e Simulated Annealing (SA), quando utilizado para identificação eficiente de parâmetros de modelos de dispositivos semicondutores de potência, baseado na física. O conhecimento dos valores destes parâmetros, para cada dispositivo, é fundamental para uma simulação precisa do comportamento dinâmico do semicondutor. Os parâmetros são extraídos passo-a-passo durante simulação transiente e desempenham um papel relevante. Uma outra abordagem interessante nesta tese relaciona-se com o facto de que nos últimos anos, os métodos de modelação para dispositivos de potência têm emergido, com alta precisão e baixo tempo de execução baseado na Equação de Difusão Ambipolar (EDA) para díodos de potência e implementação no MATLAB numa estratégia de optimização formal. A equação da EDA é resolvida numericamente sob várias condições de injeções e o modelo é desenvolvido e implementado como um subcircuito no simulador IsSpice. Larguras de camada de depleção, área total do dispositivo, nível de dopagem, entre outras, são alguns dos parâmetros extraídos do modelo. Extração de parâmetros é uma parte importante de desenvolvimento de modelo. O objectivo de extração de parâmetros e otimização é determinar tais valores de parâmetros de modelo de dispositivo que minimiza as diferenças entre um conjunto de características medidas e resultados obtidos pela simulação de modelo de dispositivo. Este processo de minimização é frequentemente chamado de ajuste de características de modelos para dados de medição. O algoritmo implementado, PSO é uma técnica de heurística de otimização promissora, eficiente e recentemente proposta por Kennedy e Eberhart, baseado no comportamento social. As técnicas propostas são encontradas para serem robustas e capazes de alcançar uma solução que é caracterizada para ser precisa e global. Comparada com algoritmo SA já realizada, o desempenho da técnica proposta tem sido testado utilizando dados experimentais para extrair parâmetros de dispositivos reais das características I-V medidas. Para validar o modelo, comparação entre resultados de modelo desenvolvido com um outro modelo já desenvolvido são apresentados.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil
Resumo:
Muitas vezes é necessário trabalhar com variáveis categóricas, porem há um número restrito de análisesque as abordam. Uma boa técnica de segmentação é a grade of membership (GoM), muito utilizada na área médica, em psicologia e em sociologia. Essa metodologia possui uma interpretação interessante baseada em perfis extremos (segmentos) e grau de pertencimento. Porém o modelo possui grande complexidade de estimação dos parâmetros pormáxima verossimilhança. Assim, neste trabalho propõe-se o uso de algoritmos genéticos para diminuir a complexidade e o tempo de cálculo, e aumentar a acurácia. A técnica é nomeada de Genetics Algorithms grade of membership (GA-GoM). Para averiguar a efetividade, o modelo foi primeiramente abordado por simulação – foi executado um experimento fatorial levando em conta o número de segmentos e variáveis trabalhadas. Em seguida, foi abordado um caso prático de segmentação de engajamento em redes sociais. Os resultados são superiores para modelos de maior complexidade. Conclui-se, assim, que é útil a abordagem para grandes bases de dados que contenham dados categóricos.
Resumo:
Tese de Doutoramento em Engenharia Industrial e de Sistemas (PDEIS)