1000 resultados para Algodón-Cultivo-México
Resumo:
El presente trabajo aborda el aprovechamiento de algunos subproductos agrícolas (bagazo de maguey y fibra de coco) y forestales (corteza de pino) en el Estado de Oaxaca (Sur de México). El objetivo principal se centra en localizar, cuantificar y caracterizar estos con vistas a su aplicación como sustratos o componentes de sustratos en cultivos ornamentales, forestales y hortícolas, y a su uso como enmiendas en cultivos tipo. Así mismo se persigue reducir el uso de la turba y la tierra de monte como sustratos mayoritarios en la actualidad. Para la localización de los subproductos se utilizaron los datos de los registros parcelarios de los productores de coco para la obtención de copra (generadores de fibra de coco) de la región costa y de los productores de mezcal (generadores del residuo de bagazo de maguey) de la región valles centrales, así como las ubicaciones de los aserraderos forestales en el Estado de Oaxaca. Se emplea un Sistema de Información Geográfica (SIG) con una cartografía digitalizada de los elementos del medio (clima, geología y suelo), de los cultivos generadores (bagazo de maguey, fibra de coco y corteza de pino), de la agricultura protegida como receptora (tomate) y de la agricultura extensiva con cultivos receptores de enmienda (café, hule, limón, mango, palma de coco y maguey). La producción anual de los residuos se cartografía y cuantifica con los siguientes resultados: bagazo de maguey 624.000 t, fibra de coco 86.000 m3 y 72.000 t de corteza de pino. Mediante el estudio de las características de los suelos de los cultivos receptores y de los requerimientos de materia orgánica de cada cultivo se calcularon las necesidades totales de materia orgánica para cada suelo. Los resultados de las cantidades globales para cada cultivo en todo el Estado muestran una necesidad total de 3.112.000 t de materia orgánica como enmienda. Con los datos obtenidos y a través de un algoritmo matemático se realiza una propuesta de localización de dos plantas de compostaje (de bagazo de maguey y fibra de coco) y cuatro plantas de compostaje de corteza de pino. Con el fin de conocer los subproductos a valorizar como sustrato o componente de sustrato se caracteriza su composición física‐química, siguiendo Normas UNE‐EN, y se analizan mediante Resonancia Magnética Nuclear (RMN). Para el acondicionamiento de bagazo de maguey y la corteza de pino se realizaron ensayos de compostaje. Al final de 241 días la temperatura y la humedad de ambos procesos se encontraban en los rangos recomendados, indicando que los materiales estaban estabilizados y con calidad para ser utilizados como sustrato o componente de sustrato. Para la fibra de coco se realizó el proceso de molienda en seco de conchas de coco provenientes de la comunidad de Río Grande Oaxaca (Principal zona productora de copra en Oaxaca). Posteriormente se emplean los materiales obtenidos como componentes para sustratos de cultivo. Se estudia el compost de bagazo de maguey y siete mezclas; el compost de corteza de pino y ocho mezclas y la fibra de coco con tres mezclas. Estos sustratos alternativos permiten obtener mezclas y reducir el uso de la tierra de monte, turba, arcilla expandida y vermiculita, siendo por tanto una alternativa sostenible para la producción en invernadero. Se elaboraron mezclas especificas para el cultivo de Lilium hibrido asiático y oriental (siete mezclas), sustratos eco‐compatibles para cultivo de tomate (nueve mezclas), para la producción de planta forestal (siete mezclas) y para la producción de plántula hortícola (ocho mezclas). Como resultados más destacados del bagazo de maguey, corteza de pino y las mezclas obtenidas se resume lo siguiente: el bagazo de maguey, con volúmenes crecientes de turba (20, 30, 50 y 60 %) y la corteza de pino, con volúmenes de turba 40 y 60%, presentan valores muy recomendados de porosidad, capacidad de aireación, capacidad de retención de humedad y equilibrio agua‐aire. Para la fibra de coco, la procedente de Río Grande presenta mejor valoración que la muestra comercial de fibra de coco de Morelos. Por último se llevó a cabo la evaluación agronómica de los sustratos‐mezclas, realizando cinco experimentos por separado, estudiando el desarrollo vegetal de cultivos tipo, que se concretan en los siguientes ensayos: 1. Producción de Lilium asiático y oriental en cama para flor de corte; 2. Producción de Lilium oriental en contenedor para flor de corte; 3. Producción de plántula forestal (Pinus greggii E y Pinus oaxacana M); 4. Producción de tomate (Solanum lycopersicum L) y 5. Producción de plántula de tomate en semillero (Solanum lycopersicum L). En relación a la producción de Lilium hibrido asiático en cama los sustratos corteza de pino (CPTU 80:20 v/v), corteza de pino + sustrato comercial (CPSC 80:20 v/v) y corteza de pino+turba+arcilla expandida+vermiculita (CPTAEV2 30:40:15:15 v/v) presentan los mejores resultados. Dichos sustratos también presentan adecuados resultados para Lilium hibrido oriental con excepción de la corteza de pino + turba (CPTU 80:20 v/v). En la producción de Lilium hibrido oriental en contenedor para flor de corte, además de los sustratos de CPSC y CPTAEV2, la mezcla de corteza de pino+turba+arcilla expandida+vermiculita (CPTAEV 70:20:5:5 v/v) manifestó una respuesta favorable. En el ensayo de producción de plántulas de Pinus greggii E y Pinus oaxacana Mirov, las mezclas con corteza de pino+turba+arcilla expandida+vermiculita (CPTAEV2 30:40:15:15 v/v) y bagazo de maguey turba+arcilla expandida+vermiculita (BMTAEV2 30:60:5:5 v/v) son una alternativa que permite disminuir el empleo de turba, arcilla expandida y vermiculita, en comparación con el sustrato testigo de turba+arcilla expandida+vermiculita (TAEV 60:30:10 v/v). En la producción de tomate (Solanum lycopersicum L) frente a la utilización actual del serrín sin compostar (SSC), las mezclas alternativas de bagazo de maguey+turba (BMT 70:30 v/v), fibra de coco de Río Grande (FCRG 100v/v) y corteza de pino+turba (CPT 70:30 v/v), presentaron los mejores resultados en rendimientos. Así mismo, en la producción de plántulas de tomate las dos mezclas alternativas de bagazo de maguey+turba+ arcilla expandida+vermiculita (BMTAEV5 50:30:10:10 v/v) y (BMTAEV6 40:40:10:10 v/v) presentaron mejores resultados que los obtenidos en la mezcla comercial (Sunshine 3), mayoritariamente utilizada en México en la producción de plántula de tomate y hortícola. ABSTRACT This paper addresses the use of some agricultural products (maguey bagasse and coconut fiber) and forestry (pine bark) in the State of Oaxaca (southern Mexico). The principal purpose is to locate, quantify and characterize these with the idea of applying them as substrates or substrate components in ornamental crops, forestry, horticultural, and their use as crop amendments. On the other hand, the reduction of peat and forest soil as main substrates is pursued. For the location of the products, registry parcel data from copra producers (coconut fiber generators) of the coastal region and mescal producers (maguey bagasse residue generators) of the central valleys region, as well as the locations of forest mills in the State of Oaxaca. A Geographic Information System (GIS) with digital mapping of environmental factors (climate, geology and soil), crop generators of residues (maguey bagasse, coconut and pine bark) receptors of amendments such as protected agriculture (tomato) and extensive agriculture crops (coffee, rubber, lemon, mango, coconut and agave). The annual production of waste is mapped and quantified with the following results: 624,000t maguey bagasse, coconut fiber 72,000 m3 and 86,000 t of pine bark. Through the study of receiving crops soils properties of and organic matter requirements of each crop, total needs of organic matter for each soil were estimated. The results of the total quantities for each crop across the state show a total of 3,112,000 t of organic matter needed as amendment. Using that data and a mathematical algorithm, the location of two composting plants (agave bagasse and coconut fiber) and four composting plants pine bark was proposed. In order to know the by‐products that were going to be used as substrates or substrate components, their physical‐chemical composition was analyzed following UNE‐EN technics. Furthermore they were analyzed by Nuclear Magnetic Resonance (NMR). For conditioning of maguey bagasse and pine bark, composting essays were conducted. At the end of 241 days the temperature and humidity of both processes were at the recommended ranges, indicating that the materials were stabilized and had reached the quality to be used as a substrate or substrate component. Coconut shells from the community of Rio Grande Oaxaca (Main copra producing area in Oaxaca) were put through a process of dry milling. Subsequently, the obtained materials were used as components for growing media. We studied the maguey bagasse compost and seven mixtures; the pine bark compost and eight blends and coconut fiber with three mixtures. These alternative substrates allow obtaining mixtures and reduce the use of forest soil, peat, vermiculite and expanded clay, making it a sustainable alternative for greenhouse production. Specific mixtures were prepared for growing Lillium, Asian and eastern hybrids (seven blends), eco‐compatible substrates for tomato (nine mixtures), for producing forest plant (seven mixtures) and for the production of horticultural seedlings (eight mixtures). Results from maguey bagasse, pine bark and mixtures obtained are summarized as follows: the maguey bagasse, with increasing volumes of peat (20, 30, 50 and 60%) and pine bark mixed with 40 and 60% peat by volume, have very recommended values of porosity, aeration capacity, water retention capacity and water‐air balance. Coconut fiber from Rio Grande had better quality than commercial coconut fiber from Morelos. Finally the agronomic evaluation of substrates‐mixtures was carried out conducting five experiments separately: 1. Production of Asiatic and Eastern Lilium in bed for cut flower, 2. Production of oriental Lillium in container for cut flower, 3.Production of forest seedlings (Pinus greggii E and Pinus oaxacana M), 4. Production of tomato (Solanum lycopersicum L) and 5. Tomato seedling production in seedbed (Solanum lycopersicum L). In relation to the production of hybrid Asian Lilium in bed, pine bark substrates (CPTU 80:20 v/v), pine bark + commercial substrate (CPSC 80:20 v/v) and pine bark + peat + expanded clay + vermiculite (CPTAEV2 30:40:15:15 v/v) showed the best results. Such substrates also have adequate results for Lilium Oriental hybrid except pine bark + peat (CPTU 80:20 v / v). In the production of Lilium oriental hybrid container for cut flower, besides the CPSC and CPTAEV2 substrates, the mixture of pine bark + peat + vermiculite expanded clay (CPTAEV 70:20:5:5 v / v) showed a favorable response. In the production of Pinus greggii E and Pinus oaxacana Mirov seedlings trial, mixtures with pine bark + peat + expanded clay + vermiculite (CPTAEV2 30:40:15:15 v/v) and maguey bagasse+ peat+ expanded clay + vermiculite (BMTAEV2 30:60:5:5 v / v) are an alternative which allows reducing the use of peat, vermiculite and expanded clay in comparison with the control substrate made of peat + expanded clay+ vermiculite (60:30 TAEV: 10 v/v). In the production of tomato (Solanum lycopersicum L), alternative mixes of maguey bagasse + peat (BMT 70:30 v/v), coconut fiber from Rio Grande (FCRG 100 v / v) and pine bark + peat (CPT 70:30 v / v) showed the best results in yields versus the current use of sawdust without compost (SSC). Likewise, in the production of tomato seedlings of the two alternative mixtures maguey bagasse + peat expanded clay + vermiculite (BMTAEV5 50:30:10:10 v/v) and (BMTAEV6 40:40:10:10 v/v) had better results than those obtained in the commercial mixture (Sunshine 3), mainly used in Mexico in tomato seedling production and horticulture.
Resumo:
La importancia económica de las especies de la familia Annonaceae en México es diversa y no se restringe a las especies comestibles, pues además incluye especies con propiedades aromáticas para la extracción de aceites esenciales, medicinales, insecticidas y tóxicos a peces. En general esta familia no se ha formalizado agronómica ni económicamente, sin embargo, presenta grandes perspectivas dentro de programas de mejoramiento genético, en el uso como portainjertos o bien como cultivos alternativos. Las principales plagas asociadas al género Annona son: Bephratelloides cubensis Ashmead, Cerconota anonella Sepp., Corythuca gossypii Fab., Planococcus citri, Chrysobotris sp., Talponia batesi Heinrich., Acantocephala femorata Fab.. Las principales enfermedades de las anonáceas reportadas son: Colletotrichum gloeosporioides Penz, Rhizopusstolonifer Ehr., Phyllosticta sp., Pestalotia sp., Macrophoma sp., Fusarium sp y Phytopthora sp.. Siendo la primera la principal enfermedad de mayor importancia en el cultivo del guanábano dado que disminuye el rendimiento y calidad de los frutos. En chirimoyo y guanábano es muy poca la información bibliográfica existente sobre plagas y enfermedades, y en las demás especies de Annona es nula. No se han realizado evaluaciones de las pérdidas que ocasionan las plagas y enfermedades en las Anonáceas, ocasionando un desconocimiento pleno sobre los daños ocasionados por este factor biótico.
Resumo:
El estado de Veracruz tiene una superficie de 71' 227 km². Cuenta con una zona potencialmente apta para el cultivo del guanábano de 18' 440 ha, (0.21%), una zona medianamente propicia de 3' 645 324 ha (51.30%) y una zona no apropiada de 3' 458 862 ha, (48.44%). Existen 20 municipios productores de guanábano en el estado de Veracruz. Actualmente la demanda por este producto ha permitido su incremento en superficie estimándose en 800 ha, en estos últimos años. Con un rendimiento aproximado de 5.0 ton/ha, por debajo de la media nacional que es de 6.5 ton/ha, esto refleja la poco tecnología empleada en el manejo del cultivo. Lamentablemente el desarrollo de este frutal en Veracruz se ha realizado de una manera desordenada. Todo ello, sin ninguna planeación y sin un estudio sobre un ordenamiento agroecológico a fin de detectar áreas potencialmente aptas para este cultivo. A pesar de toda esta complejidad se ha llegado a considerar como un frutal digno de atención por las posibilidades agroindustriales que representa. En general son tres los principales puntos prioritarios a tomar en cuenta para esta estrategia de desarrollo: Primero las características genéticas del material de propagación. Segundo las condiciones de sanidad de las plantas, principal factor que podría ser limitativo para el desarrollo del guanábano. Tercero la tecnología de producción. Existe desconocimiento en la lámina e intervalo riego, época; dosis y fuente de fertilización; época y tipo de poda. Existe una gran fortaleza en su aprovechamiento integral de este frutal: comercial, industrial, medicinal, farmacéutico, fitotóxico, alimenticio, entre otras propiedades.
Resumo:
Se presenta un análisis sobre la conservación y el uso de los recursos genéticos de especies frutales de la familia Annonaceae en México. El diagnóstico realizado en 2010 por la Red de Anonáceas (REMA) del Sistema Nacional de Recursos Fitogenéticos (SINAREFI) sirvió para tal fin y fue complementado por estudios recientes. Partimos de una revisión de registros de herbarios de la Red Mundial de Información sobre Biodiversidad (REMIB) además de recoger información con productores de comunidades rurales y recorridos de campo en estados del país donde las anonáceas se distribuyen. En México se encuentran 14 géneros y 63 especies de Annonaceae distribuidas principalmente en regiones tropicales del Sureste de México. La conservación in situ es esporádica, se está dando en huertos de traspatio para la guanábana (Annona muricata), chirimoya (A. cherimola), chincuya (A. purpurea) y saramuyo (A. squamosa) principalmente. La anona (A. reticulata), ilama (A. diversifolia) y chincuya (A. purpurea) son fomentadas pero no multiplicadas. La conservación ex situ se mantiene en bancos de germoplasma in vivo o colecciones de trabajo para guanábana (30 colectas), chirimoya (70 colectas) e ilama (100 colectas) solamente. Las semillas de estas especies no son ortodoxas y su conservación a mediano y largo plazo no está resuelta en México. El potencial de cultivo para este grupo de frutales es alto pero problemas de falta de variedades, fitosanidad, falta de tecnología y mercados reducidos limitan el cultivo comercial.
Resumo:
Con el objetivo de integrar diferentes prácticas culturales en un sistema de control de malezas en maíz, se instaló un ensayo en el Campo Experimental de la Universidad Autónoma Chapingo (México) (2250 msnm, precipitación media anual 550 mm, suelo franco, 1.7% M.O.) bajo condiciones de secano, en donde se evaluaron dos densidades (44.400 y 66.600 pl/ha), dos distribuciones (normal y equidistante) y siete métodos de control de malezas (cyanazine + alachlor (1,2 + 1,92 kg/ha), atrazine + alachlor (1,2 + 1,44 kg/ha), un escarda, dos escardas, testigo siempre desmalezado, testigo siempre desmalezado + dos escardas y testigo siempre enmalezado). Las principales malezas presentes fueron: quelite (Amaranthus sp.), perlilla (Lopezia mexicana Jacq.), rosilla chita (Galinsoga parviflora Cav.), acahual (Encelia mexicana Mart.), Sporobulus poiretti (Roem, et Sch.) Hichc. y fresadilla (Digitaria sanguinalis (L.) Scop.). El aumento de la densidad de siembra no se reflejó en el control de malezas, incidencia de enfermedades, crescimiento vegetativo y reproductivo del cultivo. La distribución equidistante aparejó un mejor control de malezas, en relación a la distribución normal, pero la incidencia de enfermedades fue mayor, lo que quizá pudo haber determinado la ausencia de diferencias en crecimiento vegetativo, un menor número de mazorcas/ha y consecuentemente la ausencia de respuesta en rendimiento de grano. De los tratamientos químicos, atrazine + alachlor tuvo un comportamiento superior a cyanazine + alachlor, en control de malezas, aunque sólo fue detectable estadisticamente en las evaluaciones. No hubo diferencia entre ambos en la incidencia de enfermedades, ni en su efecto sobre el cultivo. aunque el rendimiento de cyanazine + alachlor fue ligeramente inferior. Los métodos químicos fueron superiores a los mecánicos en control de malezas, pero no difirie -ron en la incidencia de enfermedades ni en los parámetros de desarrollo del cultivo. La realización de una escarda adicional no mejora significativamente el control de malezas, no afectando tampoco la incidencia de enfermedades, ni el desarrollo del cultivo, por lo cual resulta innecesaria. Las escardas tienen como principal efecto eliminar la interfe rencia presentada por las malezas y si éstas son eliminadas de otra manera, la realización de aquéllas no apareja beneficios significativos.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Patología) UANL
Resumo:
Tesis (Maestría en Ciencias en Producción Agrícola) UANL
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Producción Agrícola) UANL
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Microbiología Industrial) UANL
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Microbiología) UANL
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Biología) UANL
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Biología Molecular e Ingeniería Genética) UANL
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Biología Molecular e Ingeniería Genética) UANL
Resumo:
Tesis (Maestría en Ciencias en Producción Agrícola) UANL
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Microbiología) UANL