980 resultados para Algèbres de Lie


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We formulate and prove two versions of Miyachi’s theorem for connected, simply connected nilpotent Lie groups. This allows us to prove the sharpness of the constant 1/4 in the theorems of Hardy and of Cowling and Price for any nilpotent Lie group. These theorems are proved using a variant of Miyachi’s theorem for the group Fourier transform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eterio Pajares, Raquel Merino y José Miguel Santamaría (eds.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is mainly concerned with the application of groups of transformations to differential equations and in particular with the connection between the group structure of a given equation and the existence of exact solutions and conservation laws. In this respect the Lie-Bäcklund groups of tangent transformations, particular cases of which are the Lie tangent and the Lie point groups, are extensively used.

In Chapter I we first review the classical results of Lie, Bäcklund and Bianchi as well as the more recent ones due mainly to Ovsjannikov. We then concentrate on the Lie-Bäcklund groups (or more precisely on the corresponding Lie-Bäcklund operators), as introduced by Ibragimov and Anderson, and prove some lemmas about them which are useful for the following chapters. Finally we introduce the concept of a conditionally admissible operator (as opposed to an admissible one) and show how this can be used to generate exact solutions.

In Chapter II we establish the group nature of all separable solutions and conserved quantities in classical mechanics by analyzing the group structure of the Hamilton-Jacobi equation. It is shown that consideration of only Lie point groups is insufficient. For this purpose a special type of Lie-Bäcklund groups, those equivalent to Lie tangent groups, is used. It is also shown how these generalized groups induce Lie point groups on Hamilton's equations. The generalization of the above results to any first order equation, where the dependent variable does not appear explicitly, is obvious. In the second part of this chapter we investigate admissible operators (or equivalently constants of motion) of the Hamilton-Jacobi equation with polynornial dependence on the momenta. The form of the most general constant of motion linear, quadratic and cubic in the momenta is explicitly found. Emphasis is given to the quadratic case, where the particular case of a fixed (say zero) energy state is also considered; it is shown that in the latter case additional symmetries may appear. Finally, some potentials of physical interest admitting higher symmetries are considered. These include potentials due to two centers and limiting cases thereof. The most general two-center potential admitting a quadratic constant of motion is obtained, as well as the corresponding invariant. Also some new cubic invariants are found.

In Chapter III we first establish the group nature of all separable solutions of any linear, homogeneous equation. We then concentrate on the Schrodinger equation and look for an algorithm which generates a quantum invariant from a classical one. The problem of an isomorphism between functions in classical observables and quantum observables is studied concretely and constructively. For functions at most quadratic in the momenta an isomorphism is possible which agrees with Weyl' s transform and which takes invariants into invariants. It is not possible to extend the isomorphism indefinitely. The requirement that an invariant goes into an invariant may necessitate variants of Weyl' s transform. This is illustrated for the case of cubic invariants. Finally, the case of a specific value of energy is considered; in this case Weyl's transform does not yield an isomorphism even for the quadratic case. However, for this case a correspondence mapping a classical invariant to a quantum orie is explicitly found.

Chapters IV and V are concerned with the general group structure of evolution equations. In Chapter IV we establish a one to one correspondence between admissible Lie-Bäcklund operators of evolution equations (derivable from a variational principle) and conservation laws of these equations. This correspondence takes the form of a simple algorithm.

In Chapter V we first establish the group nature of all Bäcklund transformations (BT) by proving that any solution generated by a BT is invariant under the action of some conditionally admissible operator. We then use an algorithm based on invariance criteria to rederive many known BT and to derive some new ones. Finally, we propose a generalization of BT which, among other advantages, clarifies the connection between the wave-train solution and a BT in the sense that, a BT may be thought of as a variation of parameters of some. special case of the wave-train solution (usually the solitary wave one). Some open problems are indicated.

Most of the material of Chapters II and III is contained in [I], [II], [III] and [IV] and the first part of Chapter V in [V].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a novel human facial tracking system that operates in real time at a video frame rate without needing any special hardware. The approach is based on the use of Lie algebra, and uses three-dimensional feature points on the targeted human face. It is assumed that the roughly estimated facial model (relative coordinates of the three-dimensional feature points) is known. First, the initial feature positions of the face are determined using a model fitting technique. Then, the tracking is operated by the following sequence: (1) capture the new video frame and render feature points to the image plane; (2) search for new positions of the feature points on the image plane; (3) get the Euclidean matrix from the moving vector and the three-dimensional information for the points; and (4) rotate and translate the feature points by using the Euclidean matrix, and render the new points on the image plane. The key algorithm of this tracker is to estimate the Euclidean matrix by using a least square technique based on Lie algebra. The resulting tracker performed very well on the task of tracking a human face.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

报道并简述了1994年10月在云南省泸水县的老窝捕获到1只响蜜lie科的黄腰响蜜lieIndicator xanthonotus 为我国鸟类科的新记录。模式标本保存于作者单位。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper proposes a unified geometric framework for coordinated motion on Lie groups. It first gives a general problem formulation and analyzes ensuing conditions for coordinated motion. Then, it introduces a precise method to design control laws in fully actuated and underactuated settings with simple integrator dynamics. It thereby shows that coordination can be studied in a systematic way once the Lie group geometry of the configuration space is well characterized. Applying the proposed general methodology to particular examples allows to retrieve control laws that have been proposed in the literature on intuitive grounds. A link with Brockett's double bracket flows is also made. The concepts are illustrated on SO(3), SE(2) and SE(3). © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the coordinated motion of a group of agents evolving on a Lie group. Left-or rightinvariance with respect to the absolute position on the group lead to two different characterizations of relative positions and two associated definitions of coordination (fixed relative positions). Conditions for each type of coordination are derived in the associated Lie algebra. This allows to formulate the coordination problem on Lie groups as consensus in a vector space. Total coordination occurs when both types of coordination hold simultaneously. The discussion in this paper provides a common geometric framework for previously published coordination control laws on SO(3), SE(2) and SE(3). The theory is illustrated on the group of planar rigid motion SE(2). © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work considers the problem of fitting data on a Lie group by a coset of a compact subgroup. This problem can be seen as an extension of the problem of fitting affine subspaces in n to data which can be solved using principal component analysis. We show how the fitting problem can be reduced for biinvariant distances to a generalized mean calculation on an homogeneous space. For biinvariant Riemannian distances we provide an algorithm based on the Karcher mean gradient algorithm. We illustrate our approach by some examples on SO(n). © 2010 Springer -Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador: