959 resultados para Airborne Vehicles.
Resumo:
Mode of access: Internet.
Resumo:
We aim to demonstrate unaided visual 3D pose estimation and map reconstruction using both monocular and stereo vision techniques. To date, our work has focused on collecting data from Unmanned Aerial Vehicles, which generates a number of significant issues specific to the application. Such issues include scene reconstruction degeneracy from planar data, poor structure initialisation for monocular schemes and difficult 3D reconstruction due to high feature covariance. Most modern Visual Odometry (VO) and related SLAM systems make use of a number of sensors to inform pose and map generation, including laser range-finders, radar, inertial units and vision [1]. By fusing sensor inputs, the advantages and deficiencies of each sensor type can be handled in an efficient manner. However, many of these sensors are costly and each adds to the complexity of such robotic systems. With continual advances in the abilities, small size, passivity and low cost of visual sensors along with the dense, information rich data that they provide our research focuses on the use of unaided vision to generate pose estimates and maps from robotic platforms. We propose that highly accurate (�5cm) dense 3D reconstructions of large scale environments can be obtained in addition to the localisation of the platform described in other work [2]. Using images taken from cameras, our algorithm simultaneously generates an initial visual odometry estimate and scene reconstruction from visible features, then passes this estimate to a bundle-adjustment routine to optimise the solution. From this optimised scene structure and the original images, we aim to create a detailed, textured reconstruction of the scene. By applying such techniques to a unique airborne scenario, we hope to expose new robotic applications of SLAM techniques. The ability to obtain highly accurate 3D measurements of an environment at a low cost is critical in a number of agricultural and urban monitoring situations. We focus on cameras as such sensors are small, cheap and light-weight and can therefore be deployed in smaller aerial vehicles. This, coupled with the ability of small aerial vehicles to fly near to the ground in a controlled fashion, will assist in increasing the effective resolution of the reconstructed maps.
Resumo:
This paper describes a vision-based airborne collision avoidance system developed by the Australian Research Centre for Aerospace Automation (ARCAA) under its Dynamic Sense-and-Act (DSA) program. We outline the system architecture and the flight testing undertaken to validate the system performance under realistic collision course scenarios. The proposed system could be implemented in either manned or unmanned aircraft, and represents a step forward in the development of a “sense-and-avoid” capability equivalent to human “see-and-avoid”.
Resumo:
Several track-before-detection approaches for image based aircraft detection have recently been examined in an important automated aircraft collision detection application. A particularly popular approach is a two stage processing paradigm which involves: a morphological spatial filter stage (which aims to emphasize the visual characteristics of targets) followed by a temporal or track filter stage (which aims to emphasize the temporal characteristics of targets). In this paper, we proposed new spot detection techniques for this two stage processing paradigm that fuse together raw and morphological images or fuse together various different morphological images (we call these approaches morphological reinforcement). On the basis of flight test data, the proposed morphological reinforcement operations are shown to offer superior signal to-noise characteristics when compared to standard spatial filter options (such as the close-minus-open and adaptive contour morphological operations). However, system operation characterised curves, which examine detection verses false alarm characteristics after both processing stages, illustrate that system performance is very data dependent.
Resumo:
Automated airborne collision-detection systems are a key enabling technology for facilitat- ing the integration of unmanned aerial vehicles (UAVs) into the national airspace. These safety-critical systems must be sensitive enough to provide timely warnings of genuine air- borne collision threats, but not so sensitive as to cause excessive false-alarms. Hence, an accurate characterisation of detection and false alarm sensitivity is essential for understand- ing performance trade-offs, and system designers can exploit this characterisation to help achieve a desired balance in system performance. In this paper we experimentally evaluate a sky-region, image based, aircraft collision detection system that is based on morphologi- cal and temporal processing techniques. (Note that the examined detection approaches are not suitable for the detection of potential collision threats against a ground clutter back- ground). A novel collection methodology for collecting realistic airborne collision-course target footage in both head-on and tail-chase engagement geometries is described. Under (hazy) blue sky conditions, our proposed system achieved detection ranges greater than 1540m in 3 flight test cases with no false alarm events in 14.14 hours of non-target data (under cloudy conditions, the system achieved detection ranges greater than 1170m in 4 flight test cases with no false alarm events in 6.63 hours of non-target data). Importantly, this paper is the first documented presentation of detection range versus false alarm curves generated from airborne target and non-target image data.
Resumo:
The main objective of this paper is to describe the development of a remote sensing airborne air sampling system for Unmanned Aerial Systems (UAS) and provide the capability for the detection of particle and gas concentrations in real time over remote locations. The design of the air sampling methodology started by defining system architecture, and then by selecting and integrating each subsystem. A multifunctional air sampling instrument, with capability for simultaneous measurement of particle and gas concentrations was modified and integrated with ARCAA’s Flamingo UAS platform and communications protocols. As result of the integration process, a system capable of both real time geo-location monitoring and indexed-link sampling was obtained. Wind tunnel tests were conducted in order to evaluate the performance of the air sampling instrument in controlled nonstationary conditions at the typical operational velocities of the UAS platform. Once the remote fully operative air sampling system was obtained, the problem of mission design was analyzed through the simulation of different scenarios. Furthermore, flight tests of the complete air sampling system were then conducted to check the dynamic characteristics of the UAS with the air sampling system and to prove its capability to perform an air sampling mission following a specific flight path.
Resumo:
Particulate matter research is essential because of the well known significant adverse effects of aerosol particles on human health and the environment. In particular, identification of the origin or sources of particulate matter emissions is of paramount importance in assisting efforts to control and reduce air pollution in the atmosphere. This thesis aims to: identify the sources of particulate matter; compare pollution conditions at urban, rural and roadside receptor sites; combine information about the sources with meteorological conditions at the sites to locate the emission sources; compare sources based on particle size or mass; and ultimately, provide the basis for control and reduction in particulate matter concentrations in the atmosphere. To achieve these objectives, data was obtained from assorted local and international receptor sites over long sampling periods. The samples were analysed using Ion Beam Analysis and Scanning Mobility Particle Sizer methods to measure the particle mass with chemical composition and the particle size distribution, respectively. Advanced data analysis techniques were employed to derive information from large, complex data sets. Multi-Criteria Decision Making (MCDM), a ranking method, drew on data variability to examine the overall trends, and provided the rank ordering of the sites and years that sampling was conducted. Coupled with the receptor model Positive Matrix Factorisation (PMF), the pollution emission sources were identified and meaningful information pertinent to the prioritisation of control and reduction strategies was obtained. This thesis is presented in the thesis by publication format. It includes four refereed papers which together demonstrate a novel combination of data analysis techniques that enabled particulate matter sources to be identified and sampling site/year ranked. The strength of this source identification process was corroborated when the analysis procedure was expanded to encompass multiple receptor sites. Initially applied to identify the contributing sources at roadside and suburban sites in Brisbane, the technique was subsequently applied to three receptor sites (roadside, urban and rural) located in Hong Kong. The comparable results from these international and national sites over several sampling periods indicated similarities in source contributions between receptor site-types, irrespective of global location and suggested the need to apply these methods to air pollution investigations worldwide. Furthermore, an investigation into particle size distribution data was conducted to deduce the sources of aerosol emissions based on particle size and elemental composition. Considering the adverse effects on human health caused by small-sized particles, knowledge of particle size distribution and their elemental composition provides a different perspective on the pollution problem. This thesis clearly illustrates that the application of an innovative combination of advanced data interpretation methods to identify particulate matter sources and rank sampling sites/years provides the basis for the prioritisation of future air pollution control measures. Moreover, this study contributes significantly to knowledge based on chemical composition of airborne particulate matter in Brisbane, Australia and on the identity and plausible locations of the contributing sources. Such novel source apportionment and ranking procedures are ultimately applicable to environmental investigations worldwide.
Resumo:
The success or effectiveness for any aircraft design is a function of many trade-offs. Over the last 100 years of aircraft design these trade-offs have been optimized and dominant aircraft design philosophies have emerged. Pilotless aircraft (or uninhabited airborne systems, UAS) present new challenges in the optimization of their configuration. Recent developments in battery and motor technology have seen an upsurge in the utility and performance of electric powered aircraft. Thus, the opportunity to explore hybrid-electric aircraft powerplant configurations is compelling. This thesis considers the design of such a configuration from an overall propulsive, and energy efficiency perspective. A prototype system was constructed using a representative small UAS internal combustion engine (10cc methanol two-stroke) and a 600W brushless Direct current (BLDC) motor. These components were chosen to be representative of those that would be found on typical small UAS. The system was tested on a dynamometer in a wind-tunnel and the results show an improvement in overall propulsive efficiency of 17% when compared to a non-hybrid powerplant. In this case, the improvement results from the utilization of a larger propeller that the hybrid solution allows, which shows that general efficiency improvements are possible using hybrid configurations for aircraft propulsion. Additionally this approach provides new improvements in operational and mission flexibility (such as the provision of self-starting) which are outlined in the thesis. Specifically, the opportunity to use the windmilling propeller for energy regeneration was explored. It was found (in the prototype configuration) that significant power (60W) is recoverable in a steep dive, and although the efficiency of regeneration is low, the capability can allow several options for improved mission viability. The thesis concludes with the general statement that a hybrid powerplant improves the overall mission effectiveness and propulsive efficiency of small UAS.
Resumo:
Ions play an important role in affecting climate and particle formation in the atmosphere. Small ions rapidly attach to particles in the air and, therefore, studies have shown that they are suppressed in polluted environments. Urban environments, in particular, are dominated by motor vehicle emissions and, since motor vehicles are a source of both particles and small ions, the relationship between these two parameters is not well known. In order to gain a better understanding of this relationship, an intensive campaign was undertaken where particles and small ions of both signs were monitored over two week periods at each of three sites A, B and C that were affected to varying degrees by vehicle emissions. Site A was close to a major road and reported the highest particle number and lowest small ion concentrations. Precursors from motor vehicle emissions gave rise to clear particle formation events on five days and, on each day this was accompanied by a suppression of small ions. Observations at Site B, which was located within the urban airshed, though not adjacent to motor traffic, showed particle enhancement but no formation events. Site C was a clean site, away from urban sources. This site reported the lowest particle number and highest small ion concentration. The positive small ion concentration was 10% to 40% higher than the corresponding negative value at all sites. These results confirm previous findings that there is a clear inverse relationship between small ions and particles in urban environments dominated by motor vehicle emissions.
Resumo:
This paper presents a method for the estimation of thrust model parameters of uninhabited airborne systems using specific flight tests. Particular tests are proposed to simplify the estimation. The proposed estimation method is based on three steps. The first step uses a regression model in which the thrust is assumed constant. This allows us to obtain biased initial estimates of the aerodynamic coeficients of the surge model. In the second step, a robust nonlinear state estimator is implemented using the initial parameter estimates, and the model is augmented by considering the thrust as random walk. In the third step, the estimate of the thrust obtained by the observer is used to fit a polynomial model in terms of the propeller advanced ratio. We consider a numerical example based on Monte-Carlo simulations to quantify the sampling properties of the proposed estimator given realistic flight conditions.
Resumo:
Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.
Resumo:
Emission of fine particles by mobile sources has been a matter of great concern due to its potential risk both to human health and the environment. Although there is no evidence that one sole component may be responsible for the adverse health outcomes, it is postulated that the metal particle content is one of the most important factors, mainly in relation to oxidative stress. Data concerning the amount and type of metal particles emitted by automotive vehicles using Brazilian fuels are limited. The aim of this study was to identify inhalable particles (PM10) and their trace metal content in two light-duty vehicles where one was fueled with ethanol while the other was fueled with gasoline mixed with 22% of anhydrous ethanol (gasohol); these engines were tested on a chassis dynamometer. The elementary composition of the samples was evaluated by the particle-induced x-ray emission technique. The experiment showed that total emission factors ranged from 2.5 to 11.8 mg/km in the gasohol vehicle, and from 1.2 to 3 mg/km in the ethanol vehicle. The majority of particles emitted were in the fine fraction (PM2.5), in which Al, Si, Ca, and Fe corresponded to 80% of the total weight. PM10 emissions from the ethanol vehicle were about threefold lower than those of gasohol. The elevated amount of fine particulate matter is an aggravating factor, considering that these particles, and consequently associated metals, readily penetrate deeply into the respiratory tract, producing damage to lungs and other tissues.
Resumo:
We developed UAVNet, a framework for the autonomous deployment of a flying Wireless Mesh Network using small quadrocopter-based Unmanned Aerial Vehicles (UAVs). The flying wireless mesh nodes are automatically interconnected to each other and building an IEEE 802.11s wireless mesh network. The implemented UAVNet prototype is able to autonomously interconnect two end systems by setting up an airborne relay, consisting of one or several flying wireless mesh nodes. The developed software includes basic functionality to control the UAVs and to setup, deploy, manage, and monitor a wireless mesh network. Our evaluations have shown that UAVNet can significantly improve network performance.
Resumo:
"April 1992."
Resumo:
Includes index.