968 resultados para Air and rail
Resumo:
The transfer coefficient of radon from water to air was investigated in schools. Kitchens, bathrooms and locker rooms were studied for seven schools in Maine. Simulations were done in water-use rooms where radon in air detectors were in place. Quantities measured were radon in water (270-24500 F) and air (0-80 q), volume of water used, emissivities (0.01-0.99) and ventilation rates (0.012-0.066A). Variation throughout the room of the radon concentration was found. Values calculated for the transfer coefficient for kitchens and baths were ranged from 9.6 x to 2.0 x The transfer coefficient was calculated using these parameters and was also measured using concentrations of radon in water and air. This provides a means by which radon in air can be estimated using the transfer coefficient and the concentration in the water in other schools and it can be used to estimate the dose caused by radon released from water use. This project was partially funded by the United States Environmental Protection Agency (grant #X828l2 101-0) and by the State of Maine (grant #10A500178). These are the first measurements of this type to be done in schools in the United States.
Resumo:
Background. Nosocomial invasive aspergillosis (a highly fatal disease) is an increasing problem for immunocompromised patients. Aspergillus spp. can be transmitted via air (most commonly) and by water. ^ The hypothesis for this prospective study was that there is an association between patient occupancy, housekeeping practices, patients, visitors, and Aspergillus spp. loading. Rooms were sampled as not terminally cleaned (dirty) and terminally cleaned (clean). The secondary hypothesis was that Aspergillus spp. positive samples collected from more than one sampling location within the same patient room represent the same isolate. ^ Methods. Between April and October 2004, 2873 environmental samples (713 air, 607 water, 1256 surface and 297 spore traps) were collected in and around 209 “clean” and “dirty” patient rooms in a large cancer center hospital. Water sources included aerosolized water from patient room showerheads, sinks, drains, and toilets. Bioaerosol samples were from the patient room and from the running shower, flushing toilet, and outside the building. The surface samples included sink and shower drains, showerheads, and air grills. Aspergillus spp. positive samples were also sent for PCR, molecular typing (n = 89). ^ Results. All water samples were negative for Aspergillus spp. There were a total of 130 positive culturable samples (5.1%). The predominant species found was Aspergillus niger. Of the positive culturable samples, 106 (14.9%) were air and 24 (3.8%) were surface. There were 147 spore trap samples, and 49.5% were positive for Aspergillus/Penicillum spp. Of the culturable positive samples sent for PCR, 16 were indistinguishable matches. There was no significant relationship between air and water samples and positive samples from the same room. ^ Conclusion. Primarily patients, visitors and staff bring the Aspergillus spp. into the hospital. The high number of A. niger samples suggests the spores are entering the hospital from outdoors. Eliminating the materials brought to the patient floors from the outside, requiring employees, staff, and visitors to wear cover up over their street clothes, and improved cleaning procedures could further reduce positive samples. Mold strains change frequently; it is probably more significant to understand pathogenicity of viable spores than to commit resources on molecular strain testing on environmental samples alone. ^
Resumo:
In the last two decades, the significance of lead has been addressed in a number of environmental regulations at the national and state levels. This project investigated the environmental regulations (Clean Air Act and Amendments, 1970-1990 and Clean Water Act of 1977) and their cumulative effects on lead in ambient air and water in the state of Texas. For this purpose, historical records from the Texas Water Development Board, Texas Natural Resources Conservation Commission, and the United States Geological Survey have been assembled and analyzed for temporal and spatial trends. These trends might correspond to the phase out of lead in gasoline and other regulations.^ This study concluded that there is a significant correlation (p $\leq$.001) between environmental regulations of lead in gasoline and the concentration of lead in ambient air. Lead concentrations in ambient air have been reduced by over 90 percent in the past twenty years. An overall significant difference (p $\leq$.001) was found in mean (94, 15 respectively) lead concentrations in surface water between two time periods, one at the beginning of the twenty year period and one at the end of the study period. There has been an overall reduction of lead concentrations in surface water in Texas of approximately 84 percent. However, this reduction cannot be statistically associated with any one regulation. Groundwater data could not be analyzed for lead concentrations because of limitations of reporting data as "less than". Approximately two percent of the groundwater data was analyzed by Oneway ANOVA and no significant difference was found between the means (18, 19 respectively) of two time periods, 1977-1979 and 1988-1990. This data is consistent with the regulations having a contributory affect on declining concentrations, but other factors cannot be ruled out as having added to these declines. This study can also serve as a starting point for a more in-depth study of environmental regulations and their impact on the environment. ^
Resumo:
The Arctic sea-ice environment has been undergoing dramatic changes in the past decades; to which extent this will affect the deposition, fate, and effects of chemical contaminants remains virtually unknown. Here, we report the first study on the distribution and transport of mercury (Hg) across the ocean-sea-ice-atmosphere interface in the Southern Beaufort Sea of the Arctic Ocean. Despite being sampled at different sites under various atmospheric and snow cover conditions, Hg concentrations in first-year ice cores were generally low and varied within a remarkably narrow range (0.5-4 ng/L), with the highest concentration always in the surface granular ice layer which is characterized by enriched particle and brine pocket concentration. Atmospheric Hg depletion events appeared not to be an important factor in determining Hg concentrations in sea ice except for frost flowers and in the melt season when snowpack Hg leaches into the sea ice. The multiyear ice core showed a unique cyclic feature in the Hg profile with multiple peaks potentially corresponding to each ice growing/melting season. The highest Hg concentrations (up to 70 ng/L) were found in sea-ice brine and decrease as the melt season progresses. As brine is the primary habitat for microbial communities responsible for sustaining the food web in the Arctic Ocean, the high and seasonally changing Hg concentrations in brine and its potential transformation may have a major impact on Hg uptake in Arctic marine ecosystems under a changing climate.
Resumo:
Hexachlorocyclohexanes (HCHs) are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (a-, b- and g-HCH) in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. SumHCHs concentrations (the sum of a-, g- and b-HCH) in the lower atmosphere ranged from 12 to 37 pg/m**3 (mean: 27 ± 11 pg/m**3) in the Northern Hemisphere (NH), and from 1.5 to 4.0 pg/m**3 (mean: 2.8 ± 1.1 pg/m**3) in the Southern Hemisphere (SH), respectively. Water concentrations were: a-HCH 0.33-47 pg/l, g-HCH 0.02-33 pg/l and b-HCH 0.11-9.5 pg/l. Dissolved HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold trapping in high latitudes and less interhemispheric mixing process. In comparison to concentrations measured in 1987-1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2-3 orders of magnitude. Air-water exchange gradients suggested net deposition for a-HCH (mean: 3800 pg/m**2/day) and g-HCH (mean: 2000 pg/m**2/day), whereas b-HCH varied between equilibrium (volatilization: <0-12 pg/m**2/day) and net deposition (range: 6-690 pg/m**2/day). Climate change may significantly accelerate the release of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains) and drive long-range transport from sources to deposition in the open oceans. Biological productivities may interfere with the air-water exchange process as well. Consequently, further investigation is necessary to elucidate the long term trends and the biogeochemical turnover of HCHs in the oceanic environment.
Resumo:
From German point of view, air and missile defence systems are of little relevance for the protection of Germany’s territory. However, they are seen as important for conducting ‘out of area’ operations, providing military assistance to allies, and for Germany’s political and military- technical position within NATO. The Bundeswehr has been modernising its air and missile defence systems for several years. The modernisation of very short-range and short-range systems is slightly behind schedule. Plans to modernise the medium-range air and missile defence have been encountering problems since the United States decided to refrain from buying the jointly developed MEADS system. Therefore Germany is currently considering using the results of the MEADS program in the development of its own medium-range air and missile defence system, possibly in co-operation with France and Italy. Such a system would ensure protection against short-range ballistic missiles (up to 1000 km) and might become part of NATO’s ballistic missile defence, replacing the Patriot batteries which Germany is currently operating. Furthermore, Germany could expand its involvement in NATO’s ballistic missile defence in the future by buying or developing system to intercept medium- and intermediate- range ballistic missiles (up to 3000 km and 5500 km). The final decision on this matter has not yet been taken, and will be left for the successive governments of Germany to resolve. It will depend on a number of political, military and financial factors.
Resumo:
Transportation Department, Office of the Assistant Secretary for Policy and International Affairs, Washington, D.C.
Resumo:
Transportation Department, Office of the Assistant Secretary for Policy and International Affairs, Washington, D.C.