980 resultados para Agronomy and Crop Sciences
Resumo:
Oat is the major spring-sown, small grain crop in Iowa. Spring-sown small grains can be used for grain and straw production, as a companion crop to establish hay and pastures, or as a source of early-season forage as hay or haylage. Because small grains generally mature before the end of July, a forage legume, cover crop, or green manure crop can follow oats, or animal manure can be spread on the field in which oats were grown.
Resumo:
Historically, sulfur (S) deficiency has not been an issue for crop production in Iowa. Research results as recent as 2002 on corn and soybeans were consistent with previous results. The exception was a long-standing suggestion to apply S as commercial fertilizer or livestock manure for alfalfa production on sandy soils.
Resumo:
No-till minimizes the incorporation of crop residue and fertilizer with soil; resulting in wetter, colder soils and the accumulation of organic matter, phosphorus (P), and potassium (K) near the soil surface. Banding of P and Kcould be more effective than broadcast fertilization by counteracting stratification, applying nutrients in the root zone (starter effect), and minimizing reactions with the soil that may reduce their availability to plants. Therefore, a long-term study was established in 1994 to evaluate P and K fertilizer rates and placement methods for grain yield of corn and soybean managed with no-till and chiselplow/disk tillage.
Resumo:
Objectives of this project were to study corn nitrogen (N) fertilization requirement and corn-soybean yield response when grown in a rye cover cropping system. Multiple rates of N fertilizer were applied, with measurement of corn yield response to applied N and soybean yield with and without a fall planted winter rye cover crop. The study was conducted at multiple research farms, with the intent for comparison of with and without a cover crop system across varying soil and climatic conditions in Iowa.
Resumo:
Often there is yellowing of soybeans following glyphosate applications that has been attributed by some as manganese or zinc deficiency. There have been varied reports of impacts of this ‘yellow flash’ on soybean yields. The trial was conducted to investigate such claims.
Resumo:
A long-term experiment was established in 2009 to study continuous corn responses to potassium (K), nitrogen (N), and hybrid rootworm resistance. Previous research suggested a need for this study. A long-term trial conducted until 2001 at the ISU Northern Research Farm showed that the maximum corn yield level and the N rate that maximized yield was higher when K was optimal or greater. In contrast, the relative yield response to N and the N rate that maximized yield were similar for soil-test phosphorus (P) levels ranging from very low to very high. Other studies have shown that rootworm resistance often increases yield compared with untreated susceptible hybrids. Also, that rootworm resistance does not consistently affect the K rate that maximizes yield, but increases K removal because of the higher yield levels. Therefore, this new study evaluates possible interactions between rootworm resistance and N and K fertilization in corn.
Resumo:
This project was designed to study the N fertilization needs in continuous corn (CC) and corn rotated with soybean (SC) as influenced by location and climate. Multiple rates of fertilizer N were spring applied, with the intent to measure yield response to N within each rotation on a yearly basis for multiple years at multiple sites across Iowa. This will allow the determination of N requirements for each rotation, differences that exist between the two rotations, responses to applied N across different soils and climatic conditions, and evaluation of tools used to adjust N application.
Resumo:
Rising costs of petroleum fuels and increased awareness of the adverse effects of greenhouse gases have spurred interest in renewable fuels and other ‘green’ products. Recent legislation has set goals of approximately 20 billion gallons of renewable fuel produced from non-corn starch sources by the year 2022. These driving forces have increased interest in dedicated bioenergy crops. Among perennial grasses, which have received an exceptional amount of attention as dedicated energy crops, one stands out: Miscanthus (Miscanthus x giganteus).
Resumo:
Precipitation for 2011 was less than the longterm climate average. Early in the year, precipitation lagged behind normal, but then tracked close to the normal accumulation rate from mid-April through mid-August. After that time, precipitation amounts greatly lagged behind normal, and the year ended almost 7 in. behind the long-term average. (Figure 1). Overall, 2011 will be remembered for good moisture early, but ending the season with almost no rainfall.
Resumo:
No-till management for corn and soybean results in little or no incorporation of crop residues and fertilizer with soil. Subsurface banding phosphorus (P) and potassium (K) fertilizers with planter attachments could be more effective than broadcast fertilization, because in no-till with broadcast fertilizer, both nutrients accumulate at or near the soil surface. A long-term study was initiated in 1994 at the ISU Northwest Research Farm to evaluate P and K fertilizer placement for corn and soybean managed with no-till and chiselplow tillage.
Resumo:
The Neely-Kinyon Long-term Agroecological Research (LTAR) site was established in 1998 to study the long-term effects of organic production in Iowa. Treatments at the LTAR site, replicated four times in a completely randomized design, include the following rotations: conventional Corn-Soybean (C-S), organic Corn-Soybean-Oats/Alfalfa (C-SO/A), organic Corn-Soybean-Oats/AlfalfaAlfalfa (C-S-O/A-A) and Corn-SoybeanCorn-Oats/Alfalfa (C-SB-C-O/A). On April 13, 2011, Badger oats were underseeded with BR Goldfinch alfalfa at a rate of 90 lb/acre and 15 lb/acre, respectively. Following harvest of the organic corn plots in 2010, winter rye was no-till drilled at a rate of 75 lb/acre on October 20, 2010.
Resumo:
Producers utilizing a two year rotation of corn and soybean often apply fertilizer on a biannual basis, spreading recommended amounts of phosphorus and potassium for both crops prior to corn establishment. This approach minimizes application costs and is in accordance with university fertility recommendations that have found a low probability of fertilizer yield response when soils tested at the medium/optimum level or above. However, the field trials on which these state recommendations were developed are often several decades old. Increases in average corn and soybean yields and associated increases in crop nutrient removal rates have called into question the validity of these recommendations for current production environments. This study investigated the response of soil test levels and grain yield to annual and biannual fertilizer applications made at 1x and 2x rates of current university fertilizer recommendations.
Resumo:
This project was designed to study the N fertilization needs in continuous corn (CC) and corn rotated with soybean (SC) as influenced by location and climate. Multiple rates of fertilizer N were spring applied, with the intent to measure yield response to N within each rotation on a yearly basis for multiple years at multiple sites across Iowa. This will allow determination of N requirements for each rotation, differences that exist between the two rotations, responses to applied N across different soils and climatic conditions, and evaluation of tools used to adjust N application.
Resumo:
No-till management limits the incorporation of crop residue and fertilizer with soil resulting in wetter, colder soils and the accumulation of organic matter, phosphorus (P), and potassium (K) near the soil surface. Banding of P and K could be more effective than broadcast fertilization by counteracting stratification, applying nutrients in the root zone (starter effect), and minimizing reactions with the soil that may reduce their availability to plants. Therefore, this long-term study was established in 1994 to evaluate P and K fertilizer placement methods and grain yield of corn-soybean rotations managed with notill and chisel-plow/disk tillage.
Resumo:
The primary objective of this project was to determine the impact of appropriate rates of swine manure applications to corn and soybeans based on nitrogen and phosphorus requirements of crops, soil phosphorus accumulation, and the potential of nitrate and phosphorus leaching to groundwater. Another purpose of this long-term experimental study was to develop and recommend appropriate manure and nutrient management practices to producers to minimize the water contamination potential and enhance the use of swine manure as inorganic fertilizer. A third component of this study was to determine the potential effects of rye as a cover crop to reduce nitrate loss to shallow ground water.