233 resultados para Agrobacterium tumefaciens


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phaseolus vulgaris L. e considerada recalcitrante a transformacao por Agrobacterium tumefaciens. Contudo, alteracoes no meio de co-cultivo, utilizacao de linhagens hipervirulentas de Agrobacterium e de vetores binarios contendo genes vir demostraram que o feijoeiro e susceptivel a essa bacteria. O objetivo do presente trabalho foi estudar o efeito da sonificacao nos tecidos vegetais de feijoeiro, bem como a penetracao da Agrobacterium nas camadas subepidermicas do tecido vegetal, usando a metodologia SAAT ("Sonification-Assisted Agrobacterium-mediated Transformation"). A variedade de feijoeiro utilizada foi a Olathe Pinto, a linhagem de A. tumefaciens foi LBA4404:pTOK.Os embrioes de feijao foram pre-tratados po 14 dias em meio de multibrotacao e, entao submetidos a sonificacao (de 0 ou 60 segundos) na presenca de Agrobacterium. Apos a inoculacao foram co-cultivados por 24 horas em meio liquido seguido de 48 horas em meio solido, ambos, contendo 20 m. L -1 de acetoceringona. Os explantes inoculados foram fixadas em solucao de Karnovsk para avaliacoes em microscopia optica e eletronica de varredura. As analises da microspia demostraram a presenca de rupturas na epiderme, quebras da parede celular e invasao da Agrobacterium nos tecidos subepidermicos. Os reultados demostraram que o metodo SAAT e uma tecnica viavel para a inoculcao de Agrobacterium em explantes de P. vulgaris.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the genetic transformation of the mycelial tissue of Diaporthe phaseolorum, an endophytic fungus isolated from the mangrove species Laguncularia racemosa, using Agrobacterium tumefaciens-mediated transformation (ATMT). ATMT uses both the hygromycin B resistant (hph) gene and green fluorescent protein as the selection agents. The T-DNA integration into the fungal genome was assessed by both PCR and Southern blotting. All transformants examined were mitotically stable. An analysis of the T-DNA flanking sequences by thermal asymmetric interlaced PCR (TAIL-PCR) demonstrated that the disrupted genes in the transformants had similarities with conserved domains in proteins involved in antibiotic biosynthesis pathways. A library of 520 transformants was generated, and 31 of these transformants had no antibiotic activity against Staphylococcus aureus, an important human pathogen. The protocol described here, using ATMT in D. phaseolorum, will be useful for the identification and analysis of fungal genes controlling pathogenicity and antibiotic pathways. Moreover, this protocol may be used as a reference for other species in the Diaporthe genus. This is the first report to describe Agrobacterium-mediated transformation of D. phaseolorum as a tool for insertional mutagenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) delivers oncogenic T-DNA and effector proteins to susceptible plant cells. This leads to the formation of tumors termed Crown Galls. The VirB/D4 T4SS is comprised of 12 subunits (VirB1 to VirB11 and VirD4), which assemble to form two structures, a secretion channel spanning the cell envelope and a T-pilus extending from the cell surface. In A. tumefaciens, the VirB2 pilin subunit is required for assembly of the secretion channel and is the main subunit of the T-pilus. The focus of this thesis is to define key reactions associated with the T4SS biogenesis pathway involving the VirB2 pilin. Topology studies demonstrated that VirB2 integrates into the inner membrane with two transmembrane regions, a small cytoplasmic loop, and a long periplasmic loop comprised of covalently linked N and C termini. VirB2 was shown by the substituted cysteine accessibility method (SCAM) to adopt distinct structural states when integrated into the inner membrane and when assembled as a component of the secretion channel and the T-pilus. The VirB4 and VirB11 ATPases were shown by SCAM to modulate the structural state of membrane-integrated VirB2 pilin, and evidence was also obtained that VirB4 mediates extraction of pilin from the membrane. A model that VirB4 functions as a pilin dislocase by an energy-dependent mechanism was further supported by coimmunoprecipitation and osmotic shock studies. Mutational studies identified two regions of VirB10, an N-terminal transmembrane domain and an outer membrane-associated domain termed the antennae projection, that contribute selectively to T-pilus biogenesis. Lastly, characterization of a VirB10 mutant that confers a ‘leaky’ channel phenotype further highlighted the role of VirB10 in gating substrate translocation across the outer membrane as well as T-pilus biogenesis. Results of my studies support a working model in which the VirB4 ATPase catalyzes dislocation of membrane-integrated pilin, and distinct domains of VirB10 coordinate pilin incorporation into the secretion channel and the extracellular T-pilus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The VirB11 ATPase is an essential component of an Agrobacterium tumefaciens type IV bacterial secretion system that transfers oncogenic nucleoprotein complexes to susceptible plant cells. This dissertation investigates the subcellular localization and homo-oligomeric state of the VirB11 ATPase in order to provide insights about the assembly of the protein as a subunit of this membrane-associated transfer system. Subcellular fractionation studies and quantitative immunoblot analysis demonstrated that $\sim$30% of VirB11 partitioned as soluble protein and $\sim$70% was tightly associated with the bacterial cytoplasmic membrane. No differences were detected in VirB11 subcellular localization and membrane association in the presence or absence of other transport system components. Mutations in virB11 affecting protein function were mapped near the amino terminus, just upstream of a region encoding a Walker 'A' nucleotide-binding site, and within the Walker 'A' motif partitioned almost exclusively with the cytoplasmic membrane, suggesting that an activity associated with nucleotide binding could modulate the affinity of VirB11 for the cytoplasmic membrane. Merodiploid analysis of VirB11 mutant and truncation derivatives provided strong evidence that VirB11 functions as a homo- or heteromultimer and that the C-terminal half of VirB11 contains a protein interaction domain. A combination of biochemical and molecular genetic approaches suggested that VirB11 and the green fluorescence protein (GFP) formed a mixed multimer as demonstrated by immunoprecipitation experiments with anti-GFP antibodies. Second, a hybrid protein composed of VirB11 fused to the N-terminal DNA-binding domain of bacteriophage $\lambda$ cI repressor conferred immunity to $\lambda$ superinfection, demonstrating that VirB11 self-association promotes dimerization of the chimeric repressor. A conserved Walker 'A' motif, though required for VirB11 function in T-complex export, was not necessary for VirB11 self-association. Sequences in both the N- and the C-terminal halves of the protein were found to contribute to self-association of the full length protein. Chemical cross-linking experiments with His$\sb6$ tagged VirB11 suggested that VirB11 probably assembles into a higher order homo-oligomeric complex. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

That gene transfer to plant cells is a temperature-sensitive process has been known for more than 50 years. Previous work indicated that this sensitivity results from the inability to assemble a functional T pilus required for T-DNA and protein transfer to recipient cells. The studies reported here extend these observations and more clearly define the molecular basis of this assembly and transfer defect. T-pilus assembly and virulence protein accumulation were monitored in Agrobacterium tumefaciens strain C58 at different temperatures ranging from 20 degrees C to growth-inhibitory 37 degrees C. Incubation at 28 degrees C but not at 26 degrees C strongly inhibited extracellular assembly of the major T-pilus component VirB2 as well as of pilus-associated protein VirB5, and the highest amounts of T pili were detected at 20 degrees C. Analysis of temperature effects on the cell-bound virulence machinery revealed three classes of virulence proteins. Whereas class I proteins (VirB2, VirB7, VirB9, and VirB10) were readily detected at 28 degrees C, class II proteins (VirB1, VirB4, VirB5, VirB6, VirB8, VirB11, VirD2, and VirE2) were only detected after cell growth below 26 degrees C. Significant levels of class III proteins (VirB3 and VirD4) were only detected at 20 degrees C and not at higher temperatures. Shift of virulence-induced agrobacteria from 20 to 28 or 37 degrees C had no immediate effect on cell-bound T pili or on stability of most virulence proteins. However, the temperature shift caused a rapid decrease in the amount of cell-bound VirB3 and VirD4, and VirB4 and VirB11 levels decreased next. To assess whether destabilization of virulence proteins constitutes a general phenomenon, levels of virulence proteins and of extracellular T pili were monitored in different A. tumefaciens and Agrobacterium vitis strains grown at 20 and 28 degrees C. Levels of many virulence proteins were strongly reduced at 28 degrees C compared to 20 degrees C, and T-pilus assembly did not occur in all strains except "temperature-resistant" Ach5 and Chry5. Virulence protein levels correlated well with bacterial virulence at elevated temperature, suggesting that degradation of a limited set of virulence proteins accounts for the temperature sensitivity of gene transfer to plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

VirB6 from Agrobacterium tumefaciens is an essential component of the type IV secretion machinery for T pilus formation and genetic transformation of plants. Due to its predicted topology as a polytopic inner membrane protein, it was proposed to form the transport pore for cell-to-cell transfer of genetic material and proteinaceous virulence factors. Here, we show that the absence of VirB6 leads to reduced cellular levels of VirB5 and VirB3, which were proposed to assist T pilus formation as minor component(s) or assembly factor(s), respectively. Overexpression of virB6 in trans restored levels of cell-bound and T pilus-associated VirB5 to wild type but did not restore VirB3 levels. Thus, VirB6 has a stabilizing effect on VirB5 accumulation, thereby regulating T pilus assembly. In the absence of VirB6, cell-bound VirB7 monomers and VirB7-VirB9 heterodimers were reduced and VirB7 homodimer formation was abolished. This effect could not be restored by expression of VirB6 in trans. Expression of TraD, a component of the transfer machinery of the IncN plasmid pKM101, with significant sequence similarity to VirB6, restored neither protein levels nor bacterial virulence but partly permitted T pilus formation in a virB6 deletion strain. VirB6 may therefore regulate T pilus formation by direct interaction with VirB5, and wild-type levels of VirB3 and VirB7 homodimers are not required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agrobacterium tumefaciens is a plant pathogen with the unique ability to export oncogenic DNA-protein complexes (T-complexes) to susceptible plant cells and cause crown gall tumors. Delivery of the T-complexes across the bacterial membranes requires eleven VirB proteins and VirD4, which are postulated to form a transmembrane transporter. This thesis examines the subcellular localization and oligomeric structure of the 87-kDa VirB4 protein, which is one of three essential ATPases proposed to energize T-complex transport and/or assembly. Results of subcellular localization studies showed that VirB4 is tightly associated with the cytoplasmic membrane, suggesting that it is a membrane-spanning protein. The membrane topology of VirB4 was determined by using a nested deletion strategy to generate random fusions between virB4 and the periplasmically-active alkaline phosphatase, $\sp\prime phoA$. Analysis of PhoA and complementary $\beta$-galactosidase reporter fusions identified two putative periplasmically-exposed regions in VirB4. A periplasmic exposure of one of these regions was further confirmed by protease susceptibility assays using A. tumefaciens spheroplasts. To gain insight into the structure of the transporter, the topological configurations of other VirB proteins were also examined. Results from hydropathy analyses, subcellular localization, protease susceptibility, and PhoA reporter fusion studies support a model that all of the VirB proteins localize at one or both of the bacterial membranes. Immunoprecipitation and Co$\sp{2+}$ affinity chromatography studies demonstrated that native VirB4 (87-kDa) and a functional N-terminally tagged HIS-VirB4 derivative (89-kDa) interact and that the interaction is independent of other VirB proteins. A $\lambda$ cI repressor fusion assay supplied further evidence for VirB4 dimer formation. A VirB4 dimerization domain was localized to the N-terminal third of the protein, as judged by: (i) transdominance of an allele that codes for this region of VirB4; (ii) co-retention of a His-tagged N-terminal truncation derivative and native VirB4 on Co$\sp{2+}$ affinity columns; and (iii) dimer formation of the N-terminal third of VirB4 fused to the cI repressor protein. Taken together, these findings are consistent with a model that VirB4 is topologically configured as an integral cytoplasmic membrane protein with two periplasmic domains and that VirB4 assembles as homodimers via an N-terminal dimerization domain. Dimer formation is postulated to be essential for stabilization of VirB4 monomers during T-complex transporter assembly. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agrobacterium tumefaciens uses the VirB/D4 type IV secretion system (T4SS) to translocate oncogenic DNA (T-DNA) and protein substrates to plant cells. Independent of VirD4, the eleven VirB proteins are also essential for elaboration of a conjugative pilus termed the T pilus. The focus of this thesis is the characterization and analysis of two VirB proteins, VirB6 and VirB9, with respect to substrate translocation and T pilus biogenesis. Observed stabilizing effects of VirB6 on other VirB subunits and results of protein-protein interaction studies suggest that VirB6 mediates assembly of the secretion machine and T pilus through interactions with VirB7 and VirB9. Topology studies support a model for VirB6 as a polytopic membrane protein with a periplasmic N terminus, a large internal periplasmic loop, five transmembrane segments, and a cytoplasmic C terminus. Topology studies and Transfer DNA immunoprecipitation (TrIP) assays identified several important VirB6 functional domains: (i) the large internal periplasmic loop mediates interaction of VirB6 with the T-DNA, (ii) the membrane spanning region carboxyl-terminal to the large periplasmic loop mediates substrate transfer from VirB6 to VirB8, and (iii) the terminal regions of VirB6 are required for substrate transfer to VirB2 and VirB9. To analyze structure-function relationships of VirB9, the phenotypic consequences of dipeptide insertion mutations were characterized. Substrate discriminating mutations were shown to selectively export the oncogenic T-DNA and VirE2 to plant cells or a mobilizable IncQ plasmid to bacterial cells. Mutations affecting VirB9 interactions with VirB7 and VirB10 were localized to the C- and N- terminal regions respectively. Additionally, “uncoupling” mutations identified in VirB11 and VirB6 that block T pilus assembly, but not substrate transfer to recipient cells, were also identified in VirB9. These results in conjunction with computer analysis establish that VirB9, like VirB6, is also composed of distinct regions or domains that contribute in various ways to secretion channel activity and T pilus assembly. Lastly, in vivo immunofluorescent studies suggest that VirB9 localizes to the outer membrane and may play a role similar to that of secretion/ushers of types II and III secretion systems to facilitate substrate translocation across this final bacterial barrier. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The T-DNA transfer apparatus of Agrobacterium tumefaciens mediates the delivery of the T-DNA into plant cells, the transfer of the IncQ plasmid RSF1010 into plant cells, and the conjugal transfer of RSF1010 between Agrobacteria. We show in this report that the Agrobacterium-to-Agrobacterium conjugal transfer efficiencies of RSF1010 increase dramatically if the recipient strain, as well as the donor strain, carries a wild-type Ti plasmid and is capable of vir gene expression. Investigation of possible mechanisms that could account for this increased efficiency revealed that the VirB proteins encoded by the Ti plasmid were required. Although, with the exception of VirB1, all of the proteins that form the putative T-DNA transfer apparatus (VirB1–11, VirD4) are required for an Agrobacterium strain to serve as an RSF1010 donor, expression of only a subset of these proteins is required for the increase in conjugal transfer mediated by the recipient. Specifically, VirB5, 6, 11, and VirD4 are essential donor components but are dispensable for the increased recipient capacity. Defined point mutations in virB9 affected donor and recipient capacities to the same relative extent, suggesting that similar functions of VirB9 are important in both of these contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agrobacterium tumefaciens can transfer part of its Ti plasmid, the T-DNA, to plant cells where it integrates into the nuclear genome via illegitimate recombination. Integration of the T-DNA results in small deletions of the plant target DNA, and may lead to truncation of the T-DNA borders and the production of filler DNA. We showed previously that T-DNA can also be transferred from A. tumefaciens to Saccharomyces cerevisiae and integrates into the yeast genome via homologous recombination. We show here that when the T-DNA lacks homology with the S. cerevisiae genome, it integrates at random positions via illegitimate recombination. From 11 lines the integrated T-DNA was cloned back to Escherichia coli along with yeast flanking sequences. The T-DNA borders and yeast DNA flanking the T-DNA were sequenced and characterized. It was found that T-DNA integration had resulted in target DNA deletions and sometimes T-DNA truncations or filler DNA formation. Therefore, the molecular mechanism of illegitimate recombination by which T-DNA integrates in higher and lower eukaryotes seems conserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We confirm the hypothesis that Agrobacterium tumefaciens-induced galls produce ethylene that controls vessel differentiation in the host stem of tomato (Lycopersicon esculentum Mill.). Using an ethylene-insensitive mutant, Never ripe (Nr), and its isogenic wild-type parent we show that infection by A. tumefaciens results in high rates of ethylene evolution from the developing crown galls. Ethylene evolution from isolated internodes carrying galls was up to 50-fold greater than from isolated internodes of control plants when measured 21 and 28 d after infection. Tumor-induced ethylene substantially decreased vessel diameter in the host tissues beside the tumor in wild-type stems but had a very limited effect in the Nr stems. Ethylene promoted the typical unorganized callus shape of the gall, which maximized the tumor surface in wild-type stems, whereas the galls on the Nr stems had a smooth surface. The combination of decreased vessel diameter in the host and increased tumor surface ensured water-supply priority to the growing gall over the host shoot. These results indicate that in addition to the well-defined roles of auxin and cytokinin, there is a critical role for ethylene in determining crown-gall morphogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agrobacterium tumefaciens VirB proteins are essential for gene transfer from bacteria to plants. These proteins are postulated to form a transport pore to allow transfer of the T-strand DNA intermediate. To study the function of the VirB proteins in DNA transfer, we developed an expression system in A. tumefaciens. Analysis of one VirB protein, VirB9, by Western blot assays showed that under nonreducing conditions VirB9, when expressed alone, migrates as a approximately 31-kDa band but that it migrates as a approximately 36-kDa band when expressed with all other VirB proteins. The 36-kDa band is converted to the 31-kDa band by the reducing agent 2-mercaptoethanol. Using strains that contain a deletion in a defined virB gene and strains that express specific VirB proteins, we demonstrate that the 36-kDa band is composed of VirB9 and VirB7 that are linked to each other by a disulfide bond. Mutational studies demonstrate that cysteine residues at positions 24 of VirB7 and 262 of VirB9 participate in the formation of this complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Agrobacterium tumefaciens VirB7 lipoprotein contributes to the stabilization of VirB proteins during biogenesis of the putative T-complex transport apparatus. Here, we report that stabilization of VirB7 itself is correlated with its ability to form disulfide cross-linked homodimers via a reactive Cys-24 residue. Three types of beta-mercaptoethanol-dissociable complexes were visualized with VirB7 and/or a VirB7::PhoA41 fusion protein: (i) a 9-kDa complex corresponding in size to a VirB7 homodimer, (ii) a 54-kDa complex corresponding in size to a VirB7/VirB7::PhoA41 mixed dimer, and (iii) a 102-kDa complex corresponding to a VirB7::PhoA41 homodimer. A VirB7C24S mutant protein was immunologically undetectable, whereas the corresponding VirB7C24S::PhoA41 derivative accumulated to detectable levels but failed to form dissociable homodimers or mixed dimers with wild-type VirB7. We further report that VirB7-dependent stabilization of VirB9 is correlated with the ability of these two proteins to dimerize via formation of a disulfide bridge between reactive Cys-24 and Cys-262 residues, respectively. Two types of dissociable complexes were visualized: (i) a 36-kDa complex corresponding in size to a VirB7/VirB9 heterodimer and (ii) an 84-kDa complex corresponding in size to a VirB7/VirB9::PhoA293 heterodimer. A VirB9C262S mutant protein was immunologically undetectable, whereas the corresponding VirB9C262S::PhoA293 derivative accumulated to detectable levels but failed to form dissociable heterodimers with wild-type VirB7. Taken together, these results support a model in which the formation of disulfide cross-linked VirB7 dimers represent critical early steps in the biogenesis of the T-complex transport apparatus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agrobacterium tumefaciens transfers a piece of its Ti plasmid DNA (transferred DNA or T-DNA) into plant cells during crown gall tumorigenesis. A. tumefaciens can transfer its T-DNA to a wide variety of hosts, including both dicotyledonous and monocotyledonous plants. We show that the host range of A. tumefaciens can be extended to include Saccharomyces cerevisiae. Additionally, we demonstrate that while T-DNA transfer into S. cerevisiae is very similar to T-DNA transfer into plants, the requirements are not entirely conserved. The Ti plasmid-encoded vir genes of A. tumefaciens that are required for T-DNA transfer into plants are also required for T-DNA transfer into S. cerevisiae, as is vir gene induction. However, mutations in the chromosomal virulence genes of A. tumefaciens involved in attachment to plant cells have no effect on the efficiency of T-DNA transfer into S. cerevisiae. We also demonstrate that transformation efficiency is improved 500-fold by the addition of yeast telomeric sequences within the T-DNA sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agrobacterium tumefaciens transfers transferred DNA (T-DNA), a single-stranded segment of its tumor-inducing (Ti) plasmid, to the plant cell nucleus. The Ti-plasmid-encoded virulence E2 (VirE2) protein expressed in the bacterium has single-stranded DNA (ssDNA)-binding properties and has been reported to act in the plant cell. This protein is thought to exert its influence on transfer efficiency by coating and accompanying the single-stranded T-DNA (ss-T-DNA) to the plant cell genome. Here, we analyze different putative roles of the VirE2 protein in the plant cell. In the absence of VirE2 protein, mainly truncated versions of the T-DNA are integrated. We infer that VirE2 protects the ss-T-DNA against nucleolytic attack during the transfer process and that it is interacting with the ss-T-DNA on its way to the plant cell nucleus. Furthermore, the VirE2 protein was found not to be involved in directing the ss-T-DNA to the plant cell nucleus in a manner dependent on a nuclear localization signal, a function which is carried by the NLS of VirD2. In addition, the efficiency of T-DNA integration into the plant genome was found to be VirE2 independent. We conclude that the VirE2 protein of A. tumefaciens is required to preserve the integrity of the T-DNA but does not contribute to the efficiency of the integration step per se.