999 resultados para Agentes inteligentes


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Trabalho final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Resumen tomado del autor

Relevância:

70.00% 70.00%

Publicador:

Resumo:

El presente proyecto de investigación tiene como objetivo general evaluar la efectividad de los esfuerzos en la percepción de una marca a través de la compañía “Distr & Co.” en Colombia, teniendo como fuente principal un sistema de simulación basado en agentes inteligentes; con el que se busca mejorar la metodología para medir el desempeño de una marca dada. El proceso plantea que por medio de la modelación basada en agentes se pueda dar acercamiento a las partes involucradas en los procesos de compra, es decir, la empresa, vendedores, clientes y finalmente clientes potenciales.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Modelos BDI (ou seja, modelos Beliefs-Desires-Intentions models) de agentes têm sido utilizados já há algum tempo. O objetivo destes modelos é permitir a caracterização de agentes utilizando noções antropomórficas, tais como estados mentais e ações. Usualmente, estas noções e suas propriedades são formalmente definidas utilizandos formalismos lógicos que permitem aos teóricos analisar, especificar e verificar agentes racionais. No entanto, apesar de diversos sistemas já terem sido desenvolvidos baseados nestes modelos, é geralmente aceito que existe uma distância significativa entre esta lógicas BDI poderosas e sistemas reais. Este trabalho defende que a principal razão para a existência desta distância é que os formalismos lógicos utilizados para definir os modelos de agentes não possuem uma semântica operacional que os suporte. Por “semântica operacional” entende-se tanto procedimentos de prova que sejam corretos e completos em relação à semântica da lógica, bem como mecanismos que realizem os diferentes tipos de raciocínio necessários para se modelar agentes. Há, pelo menos, duas abordagens que podem ser utilizadas para superar esta limitação dos modelos BDI. Uma é estender as lógicas BDI existentes com a semântica operacional apropriada de maneira que as teorias de agentes se tornem computacionais. Isto pode ser alcançado através da definição daqueles procedimentos de prova para as lógicas usadas na definição dos estados mentais. A outra abordagem é definir os modelos BDI utilizando formalismos lógicos apropriados que sejam, ao mesmo tempo, suficientemente poderosos para representar estados mentais e que possuam procedimentos operacionais que permitam a utilizaçao da lógica como um formalismo para representação do conhecimento, ao se construir os agentes. Esta é a abordagem seguida neste trabalho. Assim, o propósito deste trabalho é apresentar um modelo BDI que, além de ser um modelo formal de agente, seja também adequado para ser utilizado para implementar agentes. Ao invés de definir um novo formalismo lógico, ou de estender um formalismo existente com uma semântica operacional, define-se as noções de crenças, desejos e intenções utilizando um formalismo lógico que seja, ao mesmo tempo, formalmente bem-definido e computacional. O formalismo escolhido é a Programação em Lógica Estendida com Negação Explícita (ELP) com a semântica dada pelaWFSX (Well-Founded Semantics with Explicit Negation - Semântica Bem-Fundada com Negação Explícita). ELP com a WFSX (referida apenas por ELP daqui para frente) estende programas em lógica ditos normais com uma segunda negação, a negação explícita1. Esta extensão permite que informação negativa seja explicitamente representada (como uma crença que uma propriedade P não se verifica, que uma intenção I não deva se verificar) e aumenta a expressividade da linguagem. No entanto, quando se introduz informação negativa, pode ser necessário ter que se lidar com programas contraditórios. A ELP, além de fornecer os procedimentos de prova necessários para as teorias expressas na sua linguagem, também fornece um mecanismo para determinar como alterar minimamente o programa em lógica de forma a remover as possíveis contradições. O modelo aqui proposto se beneficia destas características fornecidas pelo formalismo lógico. Como é usual neste tipo de contexto, este trabalho foca na definição formal dos estados mentais em como o agente se comporta, dados tais estados mentais. Mas, constrastando com as abordagens até hoje utilizadas, o modelo apresentanto não é apenas uma especificação de agente, mas pode tanto ser executado de forma a verificar o comportamento de um agente real, como ser utilizado como mecanismo de raciocínio pelo agente durante sua execução. Para construir este modelo, parte-se da análise tradicional realizada na psicologia de senso comum, onde além de crenças e desejos, intenções também é considerada como um estado mental fundamental. Assim, inicialmente define-se estes três estados mentais e as relações estáticas entre eles, notadamente restrições sobre a consistência entre estes estados mentais. Em seguida, parte-se para a definição de aspectos dinâmicos dos estados mentais, especificamente como um agente escolhe estas intenções, e quando e como ele revisa estas intenções. Em resumo, o modelo resultante possui duas características fundamentais:(1) ele pode ser usado como um ambiente para a especificação de agentes, onde é possível definir formalmente agentes utilizando estados mentais, definir formalmente propriedades para os agentes e verificar se estas propriedades são satifeitas pelos agentes; e (2) também como ambientes para implementar agentes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Resumo não disponível.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

De entre todos os paradigmas de aprendizagem actualmente identificados, a Aprendizagem por Reforço revela-se de especial interesse e aplicabilidade nos inúmeros processos que nos rodeiam: desde a solitária sonda que explora o planeta mais remoto, passando pelo programa especialista que aprende a apoiar a decisão médica pela experiencia adquirida, até ao cão de brincar que faz as delícias da criança interagindo com ela e adaptando-se aos seus gostos, e todo um novo mundo que nos rodeia e apela crescentemente a que façamos mais e melhor nesta área. Desde o aparecimento do conceito de aprendizagem por reforço, diferentes métodos tem sido propostos para a sua concretização, cada um deles abordando aspectos específicos. Duas vertentes distintas, mas complementares entre si, apresentam-se como características chave do processo de aprendizagem por reforço: a obtenção de experiência através da exploração do espaço de estados e o aproveitamento do conhecimento obtido através dessa mesma experiência. Esta dissertação propõe-se seleccionar alguns dos métodos propostos mais promissores de ambas as vertentes de exploração e aproveitamento, efectuar uma implementação de cada um destes sobre uma plataforma modular que permita a simulação do uso de agentes inteligentes e, através da sua aplicação na resolução de diferentes configurações de ambientes padrão, gerar estatísticas funcionais que permitam inferir conclusões que retractem entre outros aspectos a sua eficiência e eficácia comparativas em condições específicas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No decorrer dos últimos anos, os agentes (inteligentes) de software foram empregues como um método para colmatar as dificuldades associadas com a gestão, partilha e reutilização de um crescente volume de informação, enquanto as ontologias foram utilizadas para modelar essa mesma informação num formato semanticamente explícito e rico. À medida que a popularidade da Web Semântica aumenta e cada vez informação é partilhada sob a forma de ontologias, o problema de integração desta informação amplifica-se. Em semelhante contexto, não é expectável que dois agentes que pretendam cooperar utilizem a mesma ontologia para descrever a sua conceptualização do mundo. Inclusive pode revelar-se necessário que agentes interajam sem terem conhecimento prévio das ontologias utilizadas pelos restantes, sendo necessário que as conciliem em tempo de execução num processo comummente designado por Mapeamento de Ontologias [1]. O processo de mapeamento de ontologias é normalmente oferecido como um serviço aos agentes de negócio, podendo ser requisitado sempre que seja necessário produzir um alinhamento. No entanto, tendo em conta que cada agente tem as suas próprias necessidades e objetivos, assim como a própria natureza subjetiva das ontologias que utilizam, é possível que tenham diferentes interesses relativamente ao processo de alinhamento e que, inclusive, recorram aos serviços de mapeamento que considerem mais convenientes [1]. Diferentes matchers podem produzir resultados distintos e até mesmo contraditórios, criando-se assim conflitos entre os agentes. É necessário que se proceda então a uma tentativa de resolução dos conflitos existentes através de um processo de negociação, de tal forma que os agentes possam chegar a um consenso relativamente às correspondências que devem ser utilizadas na tradução de mensagens a trocar. A resolução de conflitos é considerada uma métrica de grande importância no que diz respeito ao processo de negociação [2]: considera-se que existe uma maior confiança associada a um alinhamento quanto menor o número de conflitos por resolver no processo de negociação que o gerou. Desta forma, um alinhamento com um número elevado de conflitos por resolver apresenta uma confiança menor que o mesmo alinhamento associado a um número elevado de conflitos resolvidos. O processo de negociação para que dois ou mais agentes gerem e concordem com um alinhamento é denominado de Negociação de Mapeamentos de Ontologias. À data existem duas abordagens propostas na literatura: (i) baseadas em Argumentação (e.g. [3] [4]) e (ii) baseadas em Relaxamento [5] [6]. Cada uma das propostas expostas apresenta um número de vantagens e limitações. Foram propostas várias formas de combinação das duas técnicas [2], com o objetivo de beneficiar das vantagens oferecidas e colmatar as suas limitações. No entanto, à data, não são conhecidas experiências documentadas que possam provar tal afirmação e, como tal, não é possível atestar que tais combinações tragam, de facto, o benefício que pretendem. O trabalho aqui apresentado pretende providenciar tais experiências e verificar se a afirmação de melhorias em relação aos resultados das técnicas individuais se mantém. Com o objetivo de permitir a combinação e de colmatar as falhas identificadas, foi proposta uma nova abordagem baseada em Relaxamento, que é posteriormente combinada com as abordagens baseadas em Argumentação. Os seus resultados, juntamente com os da combinação, são aqui apresentados e discutidos, sendo possível identificar diferenças nos resultados gerados por combinações diferentes e possíveis contextos de utilização.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

WWW is a huge, open, heterogeneous system, however its contents data is mainly human oriented. The Semantic Web needs to assure that data is readable and “understandable” to intelligent software agents, though the use of explicit and formal semantics. Ontologies constitute a privileged artifact for capturing the semantic of the WWW data. Temporal and spatial dimensions are transversal to the generality of knowledge domains and therefore are fundamental for the reasoning process of software agents. Representing temporal/spatial evolution of concepts and their relations in OWL (W3C standard for ontologies) it is not straightforward. Although proposed several strategies to tackle this problem but there is still no formal and standard approach. This work main goal consists of development of methods/tools to support the engineering of temporal and spatial aspects in intelligent systems through the use of OWL ontologies. An existing method for ontology engineering, Fonte was used as framework for the development of this work. As main contributions of this work Fonte was re-engineered in order to: i) support the spatial dimension; ii) work with OWL Ontologies; iii) and support the application of Ontology Design Patterns. Finally, the capabilities of the proposed approach were demonstrated by engineering time and space in a demo ontology about football.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A informação e a sua gestão é considerada nos nossos dias como o principal factor de sucesso ou insucesso para qualquer actividade económica ou social. O desenvolvimento de novas tecnologias força todos os agentes econcómicos a desenvolverem-se nestas áreas para conseguirem vantagens concorrenciais. Este trabalho visa fazer uma apresentação de uma “nova” área da ciência da computação a que se chamou Inteligência Artificial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aquest projecte consisteix en el disseny i desenvolupament d'una arquitectura de serveis sota el paradigma dels agents inteligents. El propòsit d'ADASMI (Architecture for Dynamic Agent Service Management and Interaction) és permetre la gestió i utilització de serveis per altres agents. L'arquitectura s'ha implementat utilitzant la plataforma d'agents de JADE i es pot utilitzar amb qualsevol altra plataforma que compleixi els estàndards d'IEEE FIPA. A més, és prou flexible com per adaptar-se en entorns dinàmics, com per exemple les xarxes ad-hoc en situacions d'emergència.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estudi i implementació d'un sistema multiagent intel·ligent i la seva aplicació a sistemes difusos. Utilització de les llibreries JADE i JFuzzyLogic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DDM is a framework that combines intelligent agents and artificial intelligence traditional algorithms such as classifiers. The central idea of this project is to create a multi-agent system that allows to compare different views into a single one.