1000 resultados para Age, dated, error to older
Resumo:
The huge ice shelves in West Antarctica -the Ross and Filchner/Ronne Ice Shelves- habe probably extended out on th continental shelf during the late Wisconsin (Stuiver et al., 1981). Previous discussions, which have focused on the Ross Sea, have suggested (1) that the ice extended across the whole continental shelf (Denton et al., 1975; Kellog et al., 1979, doi:10.1130/0091-7613(1979)7<249:LQEOTW>2.0.CO;2) or (2) that there was only a minor ecpansion (Drewry, 1979). Here we present sedimentological data from the Weddel Sea which suggests that a late Wisconsin grounded ice sheet extended to the shelfe edge. The evidence includes a recent thicker ice in Ellsworth Mountains at the head of the Filchner/Ronne Ice Shelf (Rutford et al., 1980). This thickening would lead to an expansion of the inland ice sheet over the continental shelf, filling up the Weddell Sea embayment.
Resumo:
The impact of late glacial changes on the sedimentary record was investigated in two long vibracores, collected from the shelf edge off Mauritania, northwest Africa. Lithology and radiocarbon dates indicate that the sedimentary sequences were mainly controlled by sea-level changes on the shelf. The upper Pleistocene sequence is characterized by deposition in coastal environments, while the Holocene sequence represents deposition in shelf environments. During low sea level, much sediment was supplied to the present outer shelf, and the data imply an average accumulation rate of up to 43.0 cm/1000 yrs during the late Pleistocene, which is substantially higher than the Holocene rate. Shelf sediments were continuously reworked and redistributed on a regional scale during falling and rising sea level. The presence of reworked material results in radiocarbon ages which are too old. The mollusc. Venus striatula, which presently is found north of, but not along, the Mauritanian coast, occurs in the upper Pleistocene sequence, suggesting cooler water conditions in the shelf during late glacial times. This species probably migrated to the south during late glacial times, following the southward extension of the cold Canary Current. Radiocarbon dates of the shells broadly coincide with a lowstand of sea level over this part of the continental shelf.
Resumo:
The distribution of rainfall in tropical Africa is controlled by the African rainbelt**1, which oscillates on a seasonal basis. The rainbelt has varied on centennial to millennial timescales along with changes in Northern Hemisphere high-latitude climate**2, 3, 4, 5, the Atlantic meridional overturning circulation**6 and low-latitude insolation**7 over the past glacial-interglacial cycle. However, the overall dynamics of the African rainbelt remain poorly constrained and are not always consistent with a latitudinal migration**2, 4, 5, 6, as has been proposed for other regions**8, 9. Here we use terrestrially derived organic and sedimentary markers from marine sediment cores to reconstruct the distribution of vegetation, and hence rainfall, in tropical Africa during extreme climate states over the past 23,000 years. Our data indicate that rather than migrating latitudinally, the rainbelt contracted and expanded symmetrically in both hemispheres in response to changes in climate. During the Last Glacial Maximum and Heinrich Stadial 1, the rainbelt contracted relative to the late Holocene, which we attribute to a latitudinal compression of atmospheric circulation associated with lower global mean temperatures**10. Conversely, during the mid-Holocene climatic optimum, the rainbelt expanded across tropical Africa. In light of our findings, it is not clear whether the tropical rainbelt has migrated latitudinally on a global scale, as has been suggested**8,9.
Resumo:
The present-day clay mineral distribution in the southeastern Levantine Sea and its borderlands reveals a complex pattern of different sources and distribution paths. Smectite dominates the suspended load of the Nile River and of rivers in the Near East. Illite sources are dust-bearing winds from the Sahara and southwestern Europe. Kaolinite is prevalent in rivers of the Sinai, in Egyptian wadis, and in Saharan dust. A high-resolution sediment core from the southeastern Levantine Sea spanning the last 27 ka shows that all these sources contributed during the late Quaternary and that the Nile River played a very important role in the supply of clay. Nile influence was reduced during the glacial period but was higher during the African Humid Period. In contrast to the sharp beginning and end of the African Humid Period recorded in West African records (15 and 5.5 ka), our data show a more transitional pattern and slightly lower Nile River discharge rates not starting until 4 ka. The similarity of the smectite concentrations with fluctuations in sea-surface temperatures of the tropical western Indian Ocean indicates a close relationship between the Indian Ocean climate system and the discharge of the Nile River.
Resumo:
The influence of the large-scale ocean circulation on Sahel rainfall is elusive because of the shortness of the observational record. We reconstructed the history of eolian and fluvial sedimentation on the continental slope off Senegal during the past 57,000 years. Our data show that abrupt onsets of arid conditions in the West African Sahel were linked to cold North Atlantic sea surface temperatures during times of reduced meridional overturning circulation associated with Heinrich Stadials. Climate modeling suggests that this drying is induced by a southward shift of the West African monsoon trough in conjunction with an intensification and southward expansion of the midtropospheric African Easterly Jet.
Resumo:
New Mg/Ca, Sr/Ca, and published stable oxygen isotope and 87Sr/86Sr data obtained on ostracods from gravity cores located on the northwestern Black Sea slope were used to infer changes in the Black Sea hydrology and water chemistry for the period between 30 to 8 ka B.P. (calibrated radiocarbon years). The period prior to 16.5 ka B.P. was characterized by stable conditions in all records until a distinct drop in d18O values combined with a sharp increase in 87Sr/86Sr occurred between 16.5 and 14.8 ka B.P. This event is attributed to an increased runoff from the northern drainage area of the Black Sea between Heinrich Event 1 and the onset of the Bølling warm period. While the Mg/Ca and Sr/Ca records remained rather unaffected by this inflow; they show an abrupt rise with the onset of the Bølling/Allerød warm period. This rise was caused by calcite precipitation in the surface water, which led to a sudden increase of the Sr/Ca and Mg/Ca ratios of the Black Sea water. The stable oxygen isotopes also start to increase around 15 ka B.P., although in a more gradual manner, due to isotopically enriched meteoric precipitation. While Sr/Ca remains constant during the following interval of the Younger Dryas cold period, a decrease in the Mg/Ca ratio implies that the intermediate water masses of the Black Sea temporarily cooled by 1-2°C during the Younger Dryas. The 87Sr/86Sr values drop after the cessation of the water inflow at 15 ka B.P. to a lower level until the Younger Dryas, where they reach values similar to those observed during the Last Glacial Maximum. This might point to a potential outflow to the Mediterranean Sea via the Sea of Marmara during this period. The inflow of Mediterranean water started around 9.3 ka B.P., which is clearly detectable in the abruptly increasing Mg/Ca, Sr/Ca, and 87Sr/86Sr values. The accompanying increase in the d18O record is less pronounced and would fit to an inflow lasting ~100 a.
Resumo:
We present grain-size distributions of the terrigenous fraction of two sediment cores from the southeast Levantine Sea (SL112) and the northern Aegean Sea (SL148), spanning the time interval from the late glacial to the present. End-member modelling of the grain-size distribution allows discriminating between aeolian and fluvial transport of the sediments and helps to infer palaeoenvironmental conditions in the source areas. Sedimentary and depositional processes during the late glacial and Holocene were controlled by climatic variations of both the northern high latitudes and the African climate system. The sedimentation at site SL112 off Israel is dominated by the suspension load of the River Nile and aeolian dust from the Sahara. Variations in grain size reflect the early to mid- Holocene climate transition from the African Humid Period to recent arid conditions. This climate change was gradual, in contrast to the abrupt humidity change documented inWestern Saharan records. This implies a successive decrease in Nile river sediment supply due to a step-wise aridification of the headwaters. The grain-size data of SL112 show a humidity maximum at 5 kyr BP coincident with a regionally-restricted wet phase in the Levantine Sea. The sediments at the North Aegean site SL148 consist of riverine particles and low amounts of aeolian dust, probably derived from South European sources and with probably minor Saharan influence. The sedimentation processes are controlled by climate conditions being characterized by enhanced deposition of dust during the cold and dry glacial period and by decreased aeolian influx during the temperate and humid Holocene.
Resumo:
We here present a compilation of planktic and benthic 14C reservoir ages for the Last Glacial Maximum (LGM) and early deglacial from 11 key sites of global ocean circulation in the Atlantic and Indo-Pacific Ocean. The ages were obtained by 14C plateau tuning, a robust technique to derive both an absolute chronology for marine sediment records and a high-resolution record of changing reservoir/ventilation ages (Delta14C values) for surface and deep waters by comparing the suite of planktic 14C plateaus of a sediment record with that of the atmospheric 14C record (Sarnthein et al., 2007, doi:10.1029/173GM13). Results published thus far used as atmospheric 14C reference U/Th-dated corals, the Cariaco planktic record, and speleothems (Fairbanks et al., 2005, doi:10.1016/j.quascirev.2005.04.007; Hughen et al., 2006, doi:10.1016/j.quascirev.2006.03.014; Beck et al., 2001, doi:10.1023/A:1008175728826). We have now used the varve-counted atmospheric 14C record of Lake Suigetsu terrestrial macrofossils (Ramsey et al., 2012, doi:10.1126/science.1226660) to recalibrate the boundary ages and reservoir ages of the seven published records directly to an atmospheric 14C record. In addition, the results for four new cores and further planktic results for four published records are given. Main conclusions from the new compilation are: (1) The Suigetsu atmospheric 14C record on its varve counted time scale reflects all 14C plateaus, their internal structures and relative length previously identified, but implies a rise in the average 14C plateau age by 200-700 14C yr during LGM and early deglacial times. (2) Based on different 14C ages of coeval atmospheric and planktic 14C plateaus, marine surface water Delta14C may have temporarily dropped to an equivalent of ~0 yr in low-latitude lagoon waters, but reached >2500 14C yr both in stratified subpolar waters and in upwelled waters such as in the South China Sea. These values differ significantly from a widely assumed constant global planktic Delta14C value of 400 yr. (3) Suites of deglacial planktic Delta14C values are closely reproducible in 14C records measured at neighboring core sites. (4) Apparent deep-water 14C ventilation ages (equivalents of benthic Delta14C), deduced from the sum of planktic Delta14C and coeval benthic-planktic 14C differences, vary from 500 up to >5000 yr in LGM and deglacial ocean basins.
Resumo:
The Southern Ocean plays a prominent role in the Earth's climate and carbon cycle. Changes in the Southern Ocean circulation may have regulated the release of CO2 to the atmosphere from a deep-ocean reservoir during the last deglaciation. However, the path and exact timing of this deglacial CO2 release are still under debate. Here we present measurements of deglacial surface reservoir 14C age changes in the eastern Pacific sector of the Southern Ocean, obtained by 14C dating of tephra deposited over the marine and terrestrial regions. These results, along with records of foraminifera benthic-planktic 14C age and d13C difference, provide evidence for three periods of enhanced upwelling in the Southern Ocean during the last deglaciation, supporting the hypothesis that Southern Ocean upwelling contributed to the deglacial rise in atmospheric CO2. These independently dated marine records suggest synchronous changes in the Southern Ocean circulation and Antarctic climate during the last deglaciation.
Resumo:
High-resolution percent Corg and delta18Oforam records obtained from Panama Basin core Atlantis II 54-25PC and additional data from nearby core P7 show that enhanced burial of organic carbon has characterized every major glacial period for the last 500 kyr in that area. Both Corg concentration and mass accumulation rate profiles exhibit a sawtooth pattern with maxima occurring typically in the later stages of glacial periods. Comparison with dust records suggests that the carbon accumulation rate profile reflects both the upwelling history and a variable rate of iron input during the late Quaternary. The sawtooth character may derive from increased wind velocities and rates of upwelling during glacials which are indirectly related to ice volume (Sarnthein et al., 1988). The rapid decline in export production at the end of glacials in the equatorial Pacific may be attributed to the retreat of ice sheets (thus reduced wind velocities and upwelling) coupled with a coincident decline in atmospheric dust load and/or delivery rate. The Corg accumulation rate profiles do not correlate well with atmospheric CO2 records. For example, atmospheric CO2 was already at a minimum 40 kyr ago when production in the Panama Basin began increasing dramatically, commensurate with an increase in global dust levels. Using the relationship between the degree of photosynthetic fractionation and the concentration of free CO2 in the surface ocean postulated by Popp et al. (1989), delta13Corg measurements made on core P7 show that Panama Basin surface waters have been supplying CO2 to the atmosphere continually for at least the last 50 kyr. There is no evidence for a flux of CO2 into the surface ocean in this area at any time during this period despite the higher production. If the Panama Basin cores are representative of the eastern and central equatorial Pacific, then these observations weaken the influence on CO2 drawdown postulated for increased glacial productivity at low latitudes.
Resumo:
We present a record encompassing marine isotope stages 7-1 from a hitherto unexplored and heavily ice-covered area of the Arctic Ocean, the Lomonosov Ridge off the northern Greenland-Canada continental margin, using nannofossil and benthic foraminifera stratigraphy. Planktic foraminifera assemblages are used as a key paleoceanographic proxy, and a surprisingly large variability is found for an interior Arctic Ocean site. Abundant small (63-125 µm) subpolar Turborotalita quinqueloba occur in two sections, possibly representing substages 5e (last interglacial) and 5a (warm interstadial). However, the present-day circulation pattern and the very distant location of high productive regions cannot explain such high abundances of subpolar specimens in the interior, perennially sea ice-covered Arctic Ocean. Hence our proxy record indicates that last interglacial sea ice concentrations were reduced off some areas of northern Greenland-Canada. Whether this was part of a larger regional pattern or it represents the influence of polynya areas with locally increased productivity remains to be solved. With respect to glacial conditions, increased ice-rafted debris (IRD) deposition in the area appears to be associated with glacial stages 6, 4, and late 3. Stage 2 sediments (including the Last Glacial Maximum) are condensed with a sparse IRD content only.
Resumo:
The thermal diffusion enrichment apparatus in use in Amsterdam before 1967, has been rebuilt in the Groningen Radiocarbon Dating Laboratory. It has been shown to operate reliably and reproducibly. A reasonable agreement exists between the theoretical calculations and the experimental results. The 14C enrichment of a CO sample is deduced from the simultaneous mass 30 enrichment, which is measured with a mass spectrometer. The relation between both enrichments follows from a series of calibration measurements. The over-all accuracy in the enrichment is a few percent, equivalent to a few hundred years in age. The main problem in dating very old samples is their possible contamination with recent carbon. Generally, careful sample selection and rigorous pretreatment reduce sample contamination to an acceptable value. Also, it has been established that laboratory contamination, due to a memory effect in the combustion system and to impurities in the oxygen and nitrogen gas used for combustion, can be eliminated. A detailed analysis shows that the counter background in our set-up is almost exclusively caused by cosmic ray muons. The measurement of 28 early glacial samples, mostly from North-west Europe, has yielded a consistent set of ages. These indicate the existence of three early glacial interstadials; using the Weichselian definitions: Amersfoort starting at 68 200 ± 1100, Brørup at 64 400 ± 800 and Odderade at 60 500 ± 600 years BP. This 14C chronology shows good agreement with the Camp Century chronology and the dated palaeo sea levels. The discrepancy in the age of the early part of the Last Glacial on the 14C time scale and on that adopted for the deep-sea d18 record, must probably be attributed to the use of a generalized d18 curve and a wrong interpretation of this curve in terms of three Barbados terraces.