994 resultados para Age, 14C calibrated, CALIB 5.0.2 (Stuiver et al., 2005)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Greenland ice core records indicate that the last deglaciation (~7-21 ka) was punctuated by numerous abrupt climate reversals involving temperature changes of up to 5°C-10°C within decades. However, the cause behind many of these events is uncertain. A likely candidate may have been the input of deglacial meltwater, from the Laurentide ice sheet (LIS), to the high-latitude North Atlantic, which disrupted ocean circulation and triggered cooling. Yet the direct evidence of meltwater input for many of these events has so far remained undetected. In this study, we use the geochemistry (paired Mg/Ca-d18O) of planktonic foraminifera from a sediment core south of Iceland to reconstruct the input of freshwater to the northern North Atlantic during abrupt deglacial climate change. Our record can be placed on the same timescale as ice cores and therefore provides a direct comparison between the timing of freshwater input and climate variability. Meltwater events coincide with the onset of numerous cold intervals, including the Older Dryas (14.0 ka), two events during the Allerød (at ~13.1 and 13.6 ka), the Younger Dryas (12.9 ka), and the 8.2 ka event, supporting a causal link between these abrupt climate changes and meltwater input. During the Bølling-Allerød warm interval, we find that periods of warming are associated with an increased meltwater flux to the northern North Atlantic, which in turn induces abrupt cooling, a cessation in meltwater input, and eventual climate recovery. This implies that feedback between climate and meltwater input produced a highly variable climate. A comparison to published data sets suggests that this feedback likely included fluctuations in the southern margin of the LIS causing rerouting of LIS meltwater between southern and eastern drainage outlets, as proposed by Clark et al. (2001, doi:10.1126/science.1062517).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Late Glacial to Holocene sediment sequence (Co1260, 717 cm) from Lake Dojran, located at the boarder of the F.Y.R. of Macedonia and Greece, has been investigated to provide information on climate variability in the Balkan region. A robust age-model was established from 13 radiocarbon ages, and indicates that the base of the sequence was deposited at ca. 12 500 cal yr BP, when the lake-level was low. Variations in sedimentological (H2O, TOC, CaCO3, TS, TOC/TN, TOC/TS, grain-size, XRF, d18Ocarb, d13Ccarb, d13Corg) data were linked to hydro-acoustic data and indicate that warmer and more humid climate conditions characterised the remaining period of the Younger Dryas until the beginning of the Holocene. The Holocene exhibits significant environmental variations, including the 8.2 and 4.2 ka cooling events, the Medieval Warm Period and the Little Ice Age. Human induced erosion processes in the catchment of Lake Dojran intensified after 2800 cal yr BP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High resolution palynological and geochemical data of sediment core GeoB 3910-2 (located offshore Northeast Brazil) spanning the period between 19 600 and 14 500 calibrated year bp (19.6-14.5 ka) show a land-cover change in the catchment area of local rivers in two steps related to changes in precipitation associated with Heinrich Event 1 (H1 stadial). At the end of the last glacial maximum, the landscape in semi-arid Northeast Brazil was dominated by a very dry type of caatinga vegetation, mainly composed of grasslands with some herbs and shrubs. After 18 ka, considerably more humid conditions are suggested by changes in the vegetation and by Corg and C/N data indicative of fluvial erosion. The caatinga became wetter and along lakes and rivers, sedges and gallery forest expanded. The most humid period was recorded between 16.5 and 15 ka, when humid gallery (and floodplain) forest and even small patches of mountainous Atlantic rain forest occurred together with dry forest, the latter being considered as a rather lush type of caatinga vegetation. During this humid phase erosion decreased as less lithogenic material and more organic terrestrial material were deposited on the continental slope of northern Brazil. After 15 ka arid conditions returned. During the humid second phase of the H1 stadial, a rich variety of landscapes existed in Northeast Brazil and during the drier periods small pockets of forest could probably survive in favorable spots, which would have increased the resilience of the forest to climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sediment core from the Lofoten Contourite Drift on the continental slope off Northern Norway, proximal to the former Vestfjorden-Trsnadjupet Ice Stream, details the development, variability and decline of marine margins of the northwestern Fennoscandian Ice Sheet during the time interval 25.3-14 cal ka BP, including the Last Glacial Maximum and onset of the deglaciation based on high-resolution IRD records. From the core interval between 25.3 and 17.7 cal ka BP we report data points with a mean time step of 10 years, between 17.7 cal ka BP and the Holocene time steps are typically 50 years. The core is divided into 7 informal ice-rafted debris (IRD) zones based on the variations in IRD including 7 major IRD maxima (A-G), inferred to represent periods of high iceberg production. Petrological identification reveals dominance of crystalline IRD (monocrystalline, plutonic and metamorphic rock fragments) accounting for 75-80% of total IRD assemblages, while sedimentary fragments generally account for 15-20%. The crystalline fragments (including eclogite and mangerite from a nearby terrestrial source) increase across the IRD peaks while the sedimentary fragments remain constant. This points to the importance of erosional products from icebergs originating from fast-flowing paleo-ice streams including the Vestfjorden-Trsnadjupet Ice Stream draining from the Fennoscandian mainland during the IRD maxima periods. Increased temperature of the adjacent surface water masses was probably an important external forcing factor on the Fennoscandian Ice Sheet behavior because some IRD maxima and plumite deposition from meltwater plumes post-date periods of increased sea surface temperatures. The peak IRD depositions occur in centennial and millennial time cycles (~200, 1030 and 3900 year) indicating some external forcing by solar variation. Both mechanisms could explain the observed synchronous instability of the northwestern Fennoscandian Ice Sheet to other European Ice Sheets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of intermediate water masses in climate change and ocean circulation has been emphasized recently. In particular, Southern Ocean Intermediate Waters (SOIW), such as Antarctic Intermediate Water and Subantarctic Mode Water, are thought to have acted as active interhemispheric transmitter of climate anomalies. Here we reconstruct changes in SOIW signature and spatial and temporal evolution based on a 40 kyr time series of oxygen and carbon isotopes as well as planktic Mg/Ca based thermometry from Site GeoB12615-4 in the western Indian Ocean. Our data suggest that SOIW transmitted Antarctic temperature trends to the equatorial Indian Ocean via the "oceanic tunnel" mechanism. Moreover, our results reveal that deglacial SOIW carried a signature of aged Southern Ocean deep water. We find no evidence of increased formation of intermediate waters during the deglaciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The history of glacial advances and retreats of the East Antarctic ice sheet during the Holocene is not well-known, due to limited field evidence in both the marine and terrestrial realm. A 257-cm-long sediment core was recovered from a marine inlet in the Rauer Group, East Antarctica, 1.8 km in front of the present ice-sheet margin. Radiocarbon dating and lithological characteristics reveal that the core comprises a complete marine record since 4500 yr. A significant ice-sheet expansion beyond present ice margins therefore did not occur during this period.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rauer Group is an archipelago in Prydz Bay, East Antarctica. The ice-free islands and the surrounding shallow marine areas provide valuable archives for the reconstruction of the late Pleistocene and Holocene environmental and climatic history of the region. Two sediment records from two marine inlets of Rauer Group have been studied for their sedimentological, geochemical, and biological characteristics. Radiocarbon ages from one of the inlets indicate ice-free conditions within the last glacial cycle, probably during the second half of Marine Isotope Stage 3. Subsequent ice sheet coverage of Rauer Group during the Last Glacial Maxiumum (LGM) can be inferred from a till layer recovered in one of the basins. The inlets became ice-free prior to 11,200 cal yr BP, when biogenic sedimentation started. Deglacial processes in the catchments, however, influenced the inlets until ~9200 cal. yr BP as evidenced by the input of minerogenic material. Marine productivity under relatively open water conditions indicates an early Holocene climate optimum until 8200 cal. yr BP, which is followed by a cooler period with increased sea ice. Warmer conditions are inferred for the mid Holocene, when both basins experienced an input of freshwater between ~5700-3500 cal. yr BP, probably due to ice-sheet melting and increased precipitation on the islands. Neoglacial cooling in the late Holocene since c. 3500 cal yr BP is reflected by an increase in sea ice in both inlets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arabian Sea off the Pakistan continental margin is characterized by one of the world's largest oxygen minimum zones (OMZ). The lithology and geochemistry of a 5.3 m long gravity core retrieved from the lower boundary of the modern OMZ (956 m water depth) were used to identify late Holocene changes in oceanographic conditions and the vertical extent of the OMZ. While the lower part of the core (535 - 465 cm, 5.04 - 4.45 cal kyr BP, Unit 3) is strongly bioturbated indicating oxic bottom water conditions, the upper part of the core (284 - 0 cm, 2.87 cal kyr BP to present, Unit 1) shows distinct and well-preserved lamination, suggesting anoxic bottom waters. The transitional interval from 465 to 284 cm (4.45 - 2.87 cal kyr BP, Unit 2) contains relicts of lamination which are in part intensely bioturbated. These fluctuations in bioturbation intensity suggest repetitive changes between anoxic and oxic/suboxic bottom-water conditions between 4.45 - 2.87 cal kyr BP. Barium excess (Baex) and total organic carbon (TOC) contents do not explain whether the increased TOC contents found in Unit 1 are the result of better preservation due to low BWO concentrations or if the decreased BWO concentration is a result of increased productivity. Changes in salinity and temperature of the outflowing water from the Red Sea during the Holocene influenced the water column stratification and probably affected the depth of the lower boundary of the OMZ in the northern Arabian Sea. Even if we cannot prove certain scenarios, we propose that the observed downward shift of the lower boundary of the OMZ was also impacted by a weakened Somali Current and a reduced transport of oxygen-rich Indian Central Water into the Arabian Sea, both as a response to decreased summer insolation and the continuous southward shift of the Intertropical Convergence Zone during the late Holocene.