838 resultados para African fig fly


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unicellular parasite Trypanosoma brucei shuttles between its definitive host, the tsetse fly, and various mammals including humans. In the fly digestive tract, T. brucei must first migrate to the ectoperitrophic space, establish a persistent infection of the midgut and then migrate to the salivary glands before being transmitted to a new mammalian host. In 2010, it was shown that insect stages of the parasite (procyclic forms) exhibit social motility (SoMo) when cultured on a semi-solid surface, and it was postulated that this behaviour might reflect a migration step in the tsetse fly. Now, almost 5 years after the initial report, several new publications shed some light on the biological function of SoMo and provide insights into the underlying signalling pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human African trypanosomiasis (sleeping sickness) is a neglected tropical disease caused by Trypanosoma brucei spp. The parasites are transmitted by tsetse flies and adapt to their different hosts and environments by undergoing a series of developmental changes. During differentiation, the trypanosome alters its protein coat. Bloodstream form trypanosomes in humans have a coat of variant surface glycoprotein (VSG) that shields them from the immune system. The procyclic form, the first life-cycle stage to develop in the tsetse fly, replaces the VSG coat by procyclins; these proteins do not protect the parasite from lysis by serum components. Our study exploits the parasite-specific process of differentiation from bloodstream to procyclic forms to screen for potential drug candidates. Using transgenic trypanosomes with a reporter gene in a procyclin locus, we established a whole-cell assay for differentiation in a medium-throughput format. We screened 7,495 drug-like compounds and identified 28 hits that induced expression of the reporter and loss of VSG at concentrations in the low micromolar range. Small molecules that induce differentiation to procyclic forms could facilitate studies on the regulation of differentiation as well as serving as scaffolds for medicinal chemistry for new treatments for sleeping sickness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The improved understanding of the pollen signal in the marine sediments offshore of northwest Africa is applied to deep-sea core M 16017-2 at 21°N. Downcore fluctuations in the percentage, concentration and influx diagrams record latitudinal shifts of the main northwest African vegetation zones and characteristics of the trade winds and the African Easterly Jet. Time control is provided by 14C ages and 180 records. During the period 19,000-14,000 yr B.P. a compressed savanna belt extended between about 12 ° and 14-15°N. The Sahara had maximally expanded northward and southward under hyperarid climatic conditions. The belt with trade winds and dominant African Easterly Jet transport had not shifted latitudinally. The trade winds were strong as compared to the modern situation but around 13,000 yr B.P. the trade winds weakened. After 14,000 yr B.P. the climate became less arid south of the Sahara and a first spike of fluvial runoff is registered around 13,000 yr B.P. Fluvial runoff increased strongly around 11,000 yr B.P. and maximum runoff is recorded from about 9000-7800 yr B.P. Around 12,500 yr B.P. the savanna belt started to shift northward and became richer in woody species: it shifted about 6° of latitude, reached its northernmost position during the period of 9200-7800 yr B.P. and extended between about 16° and 24°N at that time. Tropical forest had reached its maximum expansion and the Guinea zone reached as far north as about 15°N, reflecting very humid climatic conditions south of the Sahara. North of the Sahara the climate also became more humid and Mediterranean vegetation developed rapidly. The Sahara had maximally contracted and the trade winds were weak and comparable with the present day intensity. After about 7800 yr B.P. the southern fringe of the Sahara and accordingly the savanna belt, shifted rapidly southward again.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific mechanisms by which selective pressures affect individuals are often difficult to resolve. In tephritid fruit flies, males respond strongly and positively to certain plant derived chemicals. Sexual selection by female choice has been hypothesized as the mechanism driving this behaviour in certain species, as females preferentially mate with males that have fed on these chemicals. This hypothesis is, to date, based on studies of only very few species and its generality is largely untested. We tested the hypothesis on different spatial scales (small cage and seminatural field-cage) using the monophagous fruit fly, Bactrocera cacuminata. This species is known to respond to methyl eugenol (ME), a chemical found in many plant species and one upon which previous studies have focused. Contrary to expectation, no obvious female choice was apparent in selecting ME-fed males over unfed males as measured by the number of matings achieved over time, copulation duration, or time of copulation initiation. However, the number of matings achieved by ME-fed males was significantly greater than unfed males 16 and 32 days after exposure to ME in small cages (but not in a field-cage). This delayed advantage suggests that ME may not influence the pheromone system of B. cacuminata but may have other consequences, acting on some other fitness consequence (e.g., enhancement of physiology or survival) of male exposure to these chemicals. We discuss the ecological and evolutionary implications of our findings to explore alternate hypotheses to explain the patterns of response of dacine fruit flies to specific plant-derived chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.