982 resultados para Aerodynamic loads


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present a methodology for designing a compliant aircraft wing, which can morph from a given airfoil shape to another given shape under the actuation of internal forces and can offer sufficient stiffness in both configurations under the respective aerodynamic loads. The least square error in displacements, Fourier descriptors, geometric moments, and moment invariants are studied to compare candidate shapes and to pose the optimization problem. Their relative merits and demerits are discussed in this paper. The `frame finite element ground structure' approach is used for topology optimization and the resulting solutions are converted to continuum solutions. The introduction of a notch-like feature is the key to the success of the design. It not only gives a good match for the target morphed shape for the leading and trailing edges but also minimizes the extension of the flexible skin that is to be put on the airfoil frame. Even though linear small-displacement elastic analysis is used in optimization, the obtained designs are analysed for large displacement behavior. The methodology developed here is not restricted to aircraft wings; it can be used to solve any shape-morphing requirement in flexible structures and compliant mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of aerodynamic loading variations has many engineering applications, including helicopter rotor blades, wind turbines and turbo machinery. This work uses a Vortex Method to make a lagrangian description of the a twodimensional airfoil/ incident wake vortex interaction. The flow is incompressible, newtonian, homogeneus and the Reynolds Number is 5x105 .The airfoil is a NACA 0018 placed a angle of attack of the 0° and 5°simulates with the Painel Method with a constant density vorticity panels and a generation poit is near the painel. The protector layer is created does not permit vortex inside the body. The vortex Lamb convection is realized with the Euler Method (first order) and Adans-Bashforth (second order). The Random Walk Method is used to simulate the diffusion. The circular wake has 366 vortex all over positive or negative vorticity located at different heights with respect to the airfoil chord. The Lift was calculated based in the algorithm created by Ricci (2002). This simulation uses a ready algorithm vatidated with single body does not have a incident wake. The results are compared with a experimental work The comparasion concludes that the experimental results has a good agrement with this papper

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different representations for a control surface freeplay nonlinearity in a three degree of freedom aeroelastic system are assessed. These are the discontinuous, polynomial and hyperbolic tangent representations. The Duhamel formulation is used to model the aerodynamic loads. Assessment of the validity of these representations is performed through comparison with previous experimental observations. The results show that the instability and nonlinear response characteristics are accurately predicted when using the discontinuous and hyperbolic tangent representations. On the other hand, the polynomial representation fails to predict chaotic motions observed in the experiments. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analytical and numerical analyses of the nonlinear response of a three-degree-of-freedom nonlinear aeroelastic system are performed. Particularly, the effects of concentrated structural nonlinearities on the different motions are determined. The concentrated nonlinearities are introduced in the pitch, plunge, and flap springs by adding cubic stiffness in each of them. Quasi-steady approximation and the Duhamel formulation are used to model the aerodynamic loads. Using the quasi-steady approach, we derive the normal form of the Hopf bifurcation associated with the system's instability. Using the nonlinear form, three configurations including supercritical and subcritical aeroelastic systems are defined and analyzed numerically. The characteristics of these different configurations in terms of stability and motions are evaluated. The usefulness of the two aerodynamic formulations in the prediction of the different motions beyond the bifurcation is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reducing the uncertainties related to blade dynamics by the improvement of the quality of numerical simulations of the fluid structure interaction process is a key for a breakthrough in wind-turbine technology. A fundamental step in that direction is the implementation of aeroelastic models capable of capturing the complex features of innovative prototype blades, so they can be tested at realistic full-scale conditions with a reasonable computational cost. We make use of a code based on a combination of two advanced numerical models implemented in a parallel HPC supercomputer platform: First, a model of the structural response of heterogeneous composite blades, based on a variation of the dimensional reduction technique proposed by Hodges and Yu. This technique has the capacity of reducing the geometrical complexity of the blade section into a stiffness matrix for an equivalent beam. The reduced 1-D strain energy is equivalent to the actual 3-D strain energy in an asymptotic sense, allowing accurate modeling of the blade structure as a 1-D finite-element problem. This substantially reduces the computational effort required to model the structural dynamics at each time step. Second, a novel aerodynamic model based on an advanced implementation of the BEM(Blade ElementMomentum) Theory; where all velocities and forces are re-projected through orthogonal matrices into the instantaneous deformed configuration to fully include the effects of large displacements and rotation of the airfoil sections into the computation of aerodynamic forces. This allows the aerodynamic model to take into account the effects of the complex flexo-torsional deformation that can be captured by the more sophisticated structural model mentioned above. In this thesis we have successfully developed a powerful computational tool for the aeroelastic analysis of wind-turbine blades. Due to the particular features mentioned above in terms of a full representation of the combined modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads, it constitutes a substantial advancement ahead the state-of-the-art aeroelastic models currently available, like the FAST-Aerodyn suite. In this thesis, we also include the results of several experiments on the NREL-5MW blade, which is widely accepted today as a benchmark blade, together with some modifications intended to explore the capacities of the new code in terms of capturing features on blade-dynamic behavior, which are normally overlooked by the existing aeroelastic models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance–motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5ms−1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a crosswind scenario, the risk of high-speed trains overturning increases when they run on viaducts since the aerodynamic loads are higher than on the ground. In order to increase safety, vehicles are sheltered by fences that are installed on the viaduct to reduce the loads experienced by the train. Windbreaks can be designed to have different heights, and with or without eaves on the top. In this paper, a parametric study with a total of 12 fence designs was carried out using a two-dimensional model of a train standing on a viaduct. To asses the relative effectiveness of sheltering devices, tests were done in a wind tunnel with a scaled model at a Reynolds number of 1 × 105, and the train’s aerodynamic coefficients were measured. Experimental results were compared with those predicted by Unsteady Reynolds-averaged Navier-Stokes (URANS) simulations of flow, showing that a computational model is able to satisfactorily predict the trend of the aerodynamic coefficients. In a second set of tests, the Reynolds number was increased to 12 × 106 (at a free flow air velocity of 30 m/s) in order to simulate strong wind conditions. The aerodynamic coefficients showed a similar trend for both Reynolds numbers; however, their numerical value changed enough to indicate that simulations at the lower Reynolds number do not provide all required information. Furthermore, the variation of coefficients in the simulations allowed an explanation of how fences modified the flow around the vehicle to be proposed. This made it clear why increasing fence height reduced all the coefficients but adding an eave had an effect mainly on the lift force coefficient. Finally, by analysing the time signals it was possible to clarify the influence of the Reynolds number on the peak-to-peak amplitude, the time period and the Strouhal number.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El viento, como factor medio-ambiental, ha sido objeto de numerosos estudios por los efectos que induce tanto en vehículos como en estructuras. Dentro del ámbito ferroviario, las cargas aerodinámicas debidas a la acción del viento transversal pueden poner en compromiso la seguridad de los vehículos en circulación, pudiendo llegar a ocasionar el vuelco del mismo. Incluso el sistema de cables encargado de realizar el suministro eléctrico necesario para la tracción del tren, conocido como catenaria, es sensible a la acción del viento. De hecho, al igual que ocurre en ciertas estructuras de cables, la interacción entre las fuerzas aerodinámicas no estacionarias y la catenaria puede ocasionar la aparición de oscilaciones de gran amplitud debido al fenómeno de galope. Una forma sencilla de reducir los efectos no deseados de la acción del viento, es la instalación de barreras cortavientos aguas arriba de la zona que se desea proteger. La instalación de estos dispositivos, reduce la velocidad en la estela generada, pero también modifica las propiedades del flujo dentro de la misma. Esta alteración de las condiciones del flujo puede contribuir a la aparición del fenómeno de galope en estructuras caracterizadas por su gran flexibilidad, como la catenaria ferroviaria. Estos dos efectos contrapuestos hacen evidente la importancia de mantener cierta visión global del efecto introducido por la instalación de barreras cortavientos en la plataforma ferroviaria. A lo largo de este documento, se evalúa desde un enfoque multidisciplinar el efecto inducido por las barreras cortavientos en varios subsistemas ferroviarios. Por un lado se analizan las mejoras en la estabilidad lateral del vehículo mediante una serie de ensayos en túnel de viento. La medición de la distribución de presiones en la superficie de un modelo bidimensional de vehículo ferroviario proporciona una buena estimación del nivel de protección que se consigue en función de la altura de una barrera cortavientos. Por otra parte, se analiza la influencia del mismo juego de barreras cortavientos en las características del flujo situado sobre la plataforma ferroviaria, mediante la utilización de anemometría de hilo caliente (HWA) y velocimetría de imágenes de párticulas (PIV). En particular se centra la atención en las características en la posición correspondiente a los hilos conductores de la catenaria. En la última parte del documento, se realiza un análisis simplificado de la aparición oscilaciones en la catenaria, por el efecto de la inestabilidad de galope. La información obtenida sobre las características del flujo se combinan con las propiedades aerodinámicas del hilo de contacto, obtenidas en mediante una serie de ensayos en túnel de viento. De esta manera se realiza una evaluación del riesgo a la aparición de este tipo de inestabilidad aeroeslástica aplicada a una catenaria ferroviaria situada sobre un viaducto tipo. ABSTRACT Wind as an environmental factor may induce undesirable effects on vehicles and structures. The analysis of those effects has caught the attention of several researchers. Concerning the railway system, cross-wind induces aerodynamic loads on rolling stock that may increase the overturning risk of the vehicle, threatening its safe operation. Even the cable system responsible to provide the electric current required for the train traction, known as the railway overhead or catenary, is sensitive to the wind action. In fact, the interaction between the unsteady aerodynamic forces and the railway overhead may trigger the development of undamped oscillations due to galloping phenomena. The inclusion of windbreaks upstream the area that needs wind protection is a simple mean to palliate the undesirable effects caused by the wind action. Although the presence of this wind protection devices reduces the wind speed downstream, they also modify the flow properties inside their wake. This modification on the flow characteristics may ease the apparition of the galloping phenomena on flexible structures, such as the railway overhead. This two opposite effects require to maintain a global perspective on the analysis of the influence of the windbreak presence. In the present document, a multidisciplinary analysis on the effect induced by windbreaks on several railways subsystems is conducted. On the one hand, a set of wind tunnel tests is conducted to assess the improvement on the rolling stock lateral stability. The qualitative estimation of the shelter effect, as function of the windbreak height, is established through the pressure distribution measured on the surface of a two-dimensional train model. On the other hand, the flow properties above the railway platform are assessed using the same set of windbreaks. Two experimental techniques are used to measure the flow properties, hot-wire anemometry (HWA) and particle image velocimetry (PIV). In particular, the attention is focused on the flow characteristics on the contact wire location. A simplified analysis on the catenary oscillations due to galloping phenomena is conducted in the last part of the document. Both, the flow characterization performed via PIV and the aerodynamic properties of the contact wire cross-section are combined. In this manner, the risk of the aeroelastic instabilities on a railway overhead placed on a railway bridge is assessed through a practical application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflatable aerodynamic decelerators have potential advantages for planetary re-entry in robotic and human exploration missions. In this paper, we focus on an inflatable tension cone design that has potential advantages over other geometries. A computational fluid-structure interaction model of a tension cone is employed to investigate the behavior of the inflatable aeroshell at supersonic speeds for conditions matching recent experimental results. A parametric study is carried out to investigate the deflections of the tension cone as a function of inflation pressure of the torus at a Mach of 2.5. Comparison of the behavior of the structure, amplitude of deformations, and determined loads are reported. © 2010 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the last century the interest in wind-induced loads over civil engineering structures has become more and more important, the reason being that the development of new construction techniques and materials has allowed engineers and architects to design new structures far from the traditional concepts, and in many cases wind actions over these singular structures are not included in the existing codes of practice. In this paper the windinduced static loads over bridges constructed by the double cantilever method during erection stages are considered. The aerodynamic load over a double cantilever bridge under a yawing-angled wind produces a yawing (torsional) moment on the bridge deck, which can lead to undesirable rotation of the deck about the supporting pier. The effects of the wind yaw angle and the length of the deck are analysed. The wind action caused by the presence of sliding concrete forms at the ends of the deck is also studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The appearance of new materials and smaller and more capable actuators enable the morphing controlled deformation of the aerodynamic shape of wing like type of structures. This contribution presents the applied aerodynamics studies of a morphing rudder for a commercial transport aircraft. The conventional rudder aerodynamics is CFD modeled and the results correlated to certification loads report. The morphing rudder CFD model predicts better aerodynamics efficiency in relation to the conventional one. This conclusion is the first step for future commercial aircraft Vertical Tail Plane weight reductions with morphing rudder implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cover title.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD's unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD's easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tall buildings are wind-sensitive structures and could experience high wind-induced effects. Aerodynamic boundary layer wind tunnel testing has been the most commonly used method for estimating wind effects on tall buildings. Design wind effects on tall buildings are estimated through analytical processing of the data obtained from aerodynamic wind tunnel tests. Even though it is widely agreed that the data obtained from wind tunnel testing is fairly reliable the post-test analytical procedures are still argued to have remarkable uncertainties. This research work attempted to assess the uncertainties occurring at different stages of the post-test analytical procedures in detail and suggest improved techniques for reducing the uncertainties. Results of the study showed that traditionally used simplifying approximations, particularly in the frequency domain approach, could cause significant uncertainties in estimating aerodynamic wind-induced responses. Based on identified shortcomings, a more accurate dual aerodynamic data analysis framework which works in the frequency and time domains was developed. The comprehensive analysis framework allows estimating modal, resultant and peak values of various wind-induced responses of a tall building more accurately. Estimating design wind effects on tall buildings also requires synthesizing the wind tunnel data with local climatological data of the study site. A novel copula based approach was developed for accurately synthesizing aerodynamic and climatological data up on investigating the causes of significant uncertainties in currently used synthesizing techniques. Improvement of the new approach over the existing techniques was also illustrated with a case study on a 50 story building. At last, a practical dynamic optimization approach was suggested for tuning structural properties of tall buildings towards attaining optimum performance against wind loads with less number of design iterations.