926 resultados para Advanced signal processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The School of Electrical and Electronic Systems Engineering of Queensland University of Technology (like many other universities around the world) has recognised the importance of complementing the teaching of signal processing with computer based experiments. A laboratory has been developed to provide a "hands-on" approach to the teaching of signal processing techniques. The motivation for the development of this laboratory was the cliche "What I hear I remember but what I do I understand." The laboratory has been named as the "Signal Computing and Real-time DSP Laboratory" and provides practical training to approximately 150 final year undergraduate students each year. The paper describes the novel features of the laboratory, techniques used in the laboratory based teaching, interesting aspects of the experiments that have been developed and student evaluation of the teaching techniques

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and effective down-sample algorithm, Peak-Hold-Down-Sample (PHDS) algorithm is developed in this paper to enable a rapid and efficient data transfer in remote condition monitoring applications. The algorithm is particularly useful for high frequency Condition Monitoring (CM) techniques, and for low speed machine applications since the combination of the high sampling frequency and low rotating speed will generally lead to large unwieldy data size. The effectiveness of the algorithm was evaluated and tested on four sets of data in the study. One set of the data was extracted from the condition monitoring signal of a practical industry application. Another set of data was acquired from a low speed machine test rig in the laboratory. The other two sets of data were computer simulated bearing defect signals having either a single or multiple bearing defects. The results disclose that the PHDS algorithm can substantially reduce the size of data while preserving the critical bearing defect information for all the data sets used in this work even when a large down-sample ratio was used (i.e., 500 times down-sampled). In contrast, the down-sample process using existing normal down-sample technique in signal processing eliminates the useful and critical information such as bearing defect frequencies in a signal when the same down-sample ratio was employed. Noise and artificial frequency components were also induced by the normal down-sample technique, thus limits its usefulness for machine condition monitoring applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

utomatic pain monitoring has the potential to greatly improve patient diagnosis and outcomes by providing a continuous objective measure. One of the most promising methods is to do this via automatically detecting facial expressions. However, current approaches have failed due to their inability to: 1) integrate the rigid and non-rigid head motion into a single feature representation, and 2) incorporate the salient temporal patterns into the classification stage. In this paper, we tackle the first problem by developing a “histogram of facial action units” representation using Active Appearance Model (AAM) face features, and then utilize a Hidden Conditional Random Field (HCRF) to overcome the second issue. We show that both of these methods improve the performance on the task of pain detection in sequence level compared to current state-of-the-art-methods on the UNBC-McMaster Shoulder Pain Archive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organizations make increasingly use of social media in order to compete for customer awareness and improve the quality of their goods and services. Multiple techniques of social media analysis are already in use. Nevertheless, theoretical underpinnings and a sound research agenda are still unavailable in this field at the present time. In order to contribute to setting up such an agenda, we introduce digital social signal processing (DSSP) as a new research stream in IS that requires multi-facetted investigations. Our DSSP concept is founded upon a set of four sequential activities: sensing digital social signals that are emitted by individuals on social media; decoding online data of social media in order to reconstruct digital social signals; matching the signals with consumers’ life events; and configuring individualized goods and service offerings tailored to the individual needs of customers. We further contribute to tying loose ends of different research areas together, in order to frame DSSP as a field for further investigation. We conclude with developing a research agenda.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diagnostics of mechanical components operating in transient conditions is still an open issue, in both research and industrial field. Indeed, the signal processing techniques developed to analyse stationary data are not applicable or are affected by a loss of effectiveness when applied to signal acquired in transient conditions. In this paper, a suitable and original signal processing tool (named EEMED), which can be used for mechanical component diagnostics in whatever operating condition and noise level, is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED) and the analytical approach of the Hilbert transform. The proposed tool is able to supply diagnostic information on the basis of experimental vibrations measured in transient conditions. The tool has been originally developed in order to detect localized faults on bearings installed in high speed train traction equipments and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on spectral kurtosis or envelope analysis, which represent until now the landmark for bearings diagnostics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The signal processing techniques developed for the diagnostics of mechanical components operating in stationary conditions are often not applicable or are affected by a loss of effectiveness when applied to signals measured in transient conditions. In this chapter, an original signal processing tool is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition, Minimum Entropy Deconvolution and the analytical approach of the Hilbert transform. The tool has been developed to detect localized faults on bearings of traction systems of high speed trains and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on envelope analysis or spectral kurtosis, which represent until now the landmark for bearings diagnostics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterns of movement in aquatic animals reflect ecologically important behaviours. Cyclical changes in the abiotic environment influence these movements, but when multiple processes occur simultaneously, identifying which is responsible for the observed movement can be complex. Here we used acoustic telemetry and signal processing to define the abiotic processes responsible for movement patterns in freshwater whiprays (Himantura dalyensis). Acoustic transmitters were implanted into the whiprays and their movements detected over 12 months by an array of passive acoustic receivers, deployed throughout 64 km of the Wenlock River, Qld, Australia. The time of an individual's arrival and departure from each receiver detection field was used to estimate whipray location continuously throughout the study. This created a linear-movement-waveform for each whipray and signal processing revealed periodic components within the waveform. Correlation of movement periodograms with those from abiotic processes categorically illustrated that the diel cycle dominated the pattern of whipray movement during the wet season, whereas tidal and lunar cycles dominated during the dry season. The study methodology represents a valuable tool for objectively defining the relationship between abiotic processes and the movement patterns of free-ranging aquatic animals and is particularly expedient when periods of no detection exist within the animal location data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concept inventory tests are one method to evaluate conceptual understanding and identify possible misconceptions. The multiple-choice question format, offering a choice between a correct selection and common misconceptions, can provide an assessment of students' conceptual understanding in various dimensions. Misconceptions of some engineering concepts exist due to a lack of mental frameworks, or schemas, for these types of concepts or conceptual areas. This study incorporated an open textual response component in a multiple-choice concept inventory test to capture written explanations of students' selections. The study's goal was to identify, through text analysis of student responses, the types and categorizations of concepts in these explanations that had not been uncovered by the distractor selections. The analysis of the textual explanations of a subset of the discrete-time signals and systems concept inventory questions revealed that students have difficulty conceptually explaining several dimensions of signal processing. This contributed to their inability to provide a clear explanation of the underlying concepts, such as mathematical concepts. The methods used in this study evaluate students' understanding of signals and systems concepts through their ability to express understanding in written text. This may present a bias for students with strong written communication skills. This study presents a framework for extracting and identifying the types of concepts students use to express their reasoning when answering conceptual questions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiresolution synthetic aperture radar (SAR) image formation has been proven to be beneficial in a variety of applications such as improved imaging and target detection as well as speckle reduction. SAR signal processing traditionally carried out in the Fourier domain has inherent limitations in the context of image formation at hierarchical scales. We present a generalized approach to the formation of multiresolution SAR images using biorthogonal shift-invariant discrete wavelet transform (SIDWT) in both range and azimuth directions. Particularly in azimuth, the inherent subband decomposition property of wavelet packet transform is introduced to produce multiscale complex matched filtering without involving any approximations. This generalized approach also includes the formulation of multilook processing within the discrete wavelet transform (DWT) paradigm. The efficiency of the algorithm in parallel form of execution to generate hierarchical scale SAR images is shown. Analytical results and sample imagery of diffuse backscatter are presented to validate the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes dispersed in polymer matrix have been aligned in the form of fibers and interconnects and cured electrically and by UV light. Conductivity and effective semiconductor tunneling against reverse to forward bias field have been designed to have differentiable current-voltage response of each of the fiber/channel. The current-voltage response is a function of the strain applied to the fibers along axial direction. Biaxial and shear strains are correlated by differentiating signals from the aligned fibers/channels. Using a small doping of magnetic nanoparticles in these composite fibers, magneto-resistance properties are realized which are strong enough to use the resulting magnetostriction as a state variable for signal processing and computing. Various basic analog signal processing tasks such as addition, convolution and filtering etc. can be performed. These preliminary study shows promising application of the concept in combined analog-digital computation in carbon nanotube based fibers. Various dynamic effects such as relaxation, electric field dependent nonlinearities and hysteresis on the output signals are studied using experimental data and analytical model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a communication theoretic framework for modeling 2-D magnetic recording channels. Using the model, we define the signal-to-noise ratio (SNR) for the channel considering several physical parameters, such as the channel bit density, code rate, bit aspect ratio, and noise parameters. We analyze the problem of optimizing the bit aspect ratio for maximizing SNR. The read channel architecture comprises a novel 2-D joint self-iterating equalizer and detection system with noise prediction capability. We evaluate the system performance based on our channel model through simulations. The coded performance with the 2-D equalizer detector indicates similar to 5.5 dB of SNR gain over uncoded data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binaural hearing studies show that the auditory system uses the phase-difference information in the auditory stimuli for localization of a sound source. Motivated by this finding, we present a method for demodulation of amplitude-modulated-frequency-modulated (AM-FM) signals using a ignal and its arbitrary phase-shifted version. The demodulation is achieved using two allpass filters, whose impulse responses are related through the fractional Hilbert transform (FrHT). The allpass filters are obtained by cosine-modulation of a zero-phase flat-top prototype halfband lowpass filter. The outputs of the filters are combined to construct an analytic signal (AS) from which the AM and FM are estimated. We show that, under certain assumptions on the signal and the filter structures, the AM and FM can be obtained exactly. The AM-FM calculations are based on the quasi-eigenfunction approximation. We then extend the concept to the demodulation of multicomponent signals using uniform and non-uniform cosine-modulated filterbank (FB) structures consisting of flat bandpass filters, including the uniform cosine-modulated, equivalent rectangular bandwidth (ERB), and constant-Q filterbanks. We validate the theoretical calculations by considering application on synthesized AM-FM signals and compare the performance in presence of noise with three other multiband demodulation techniques, namely, the Teager-energy-based approach, the Gabor's AS approach, and the linear transduction filter approach. We also show demodulation results for real signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided.