992 resultados para Adjoint method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper is devoted to extending the new efficient frequency-domain method of adjoint Green's function calculation to curvilinear multi-block RANS domains for middle and farfield sound computations. Numerical details of the method such as grids, boundary conditions and convergence acceleration are discussed. Two acoustic source models are considered in conjunction with the method and acoustic modelling results are presented for a benchmark low-Reynolds-number jet case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis Entitled Spectral theory of bounded self-adjoint operators -A linear algebraic approach.The main results of the thesis can be classified as three different approaches to the spectral approximation problems. The truncation method and its perturbed versions are part of the classical linear algebraic approach to the subject. The usage of block Toeplitz-Laurent operators and the matrix valued symbols is considered as a particular example where the linear algebraic techniques are effective in simplifying problems in inverse spectral theory. The abstract approach to the spectral approximation problems via pre-conditioners and Korovkin-type theorems is an attempt to make the computations involved, well conditioned. However, in all these approaches, linear algebra comes as the central object. The objective of this study is to discuss the linear algebraic techniques in the spectral theory of bounded self-adjoint operators on a separable Hilbert space. The usage of truncation method in approximating the bounds of essential spectrum and the discrete spectral values outside these bounds is well known. The spectral gap prediction and related results was proved in the second chapter. The discrete versions of Borg-type theorems, proved in the third chapter, partly overlap with some known results in operator theory. The pure linear algebraic approach is the main novelty of the results proved here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow in the world's oceans occurs at a wide range of spatial scales, from a fraction of a metre up to many thousands of kilometers. In particular, regions of intense flow are often highly localised, for example, western boundary currents, equatorial jets, overflows and convective plumes. Conventional numerical ocean models generally use static meshes. The use of dynamically-adaptive meshes has many potential advantages but needs to be guided by an error measure reflecting the underlying physics. A method of defining an error measure to guide an adaptive meshing algorithm for unstructured tetrahedral finite elements, utilizing an adjoint or goal-based method, is described here. This method is based upon a functional, encompassing important features of the flow structure. The sensitivity of this functional, with respect to the solution variables, is used as the basis from which an error measure is derived. This error measure acts to predict those areas of the domain where resolution should be changed. A barotropic wind driven gyre problem is used to demonstrate the capabilities of the method. The overall objective of this work is to develop robust error measures for use in an oceanographic context which will ensure areas of fine mesh resolution are used only where and when they are required. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data assimilation aims to incorporate measured observations into a dynamical system model in order to produce accurate estimates of all the current (and future) state variables of the system. The optimal estimates minimize a variational principle and can be found using adjoint methods. The model equations are treated as strong constraints on the problem. In reality, the model does not represent the system behaviour exactly and errors arise due to lack of resolution and inaccuracies in physical parameters, boundary conditions and forcing terms. A technique for estimating systematic and time-correlated errors as part of the variational assimilation procedure is described here. The modified method determines a correction term that compensates for model error and leads to improved predictions of the system states. The technique is illustrated in two test cases. Applications to the 1-D nonlinear shallow water equations demonstrate the effectiveness of the new procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid clouds play a profound role in the global radiation budget but it is difficult to remotely retrieve their vertical profile. Ordinary narrow field-of-view (FOV) lidars receive a strong return from such clouds but the information is limited to the first few optical depths. Wideangle multiple-FOV lidars can isolate radiation scattered multiple times before returning to the instrument, often penetrating much deeper into the cloud than the singly-scattered signal. These returns potentially contain information on the vertical profile of extinction coefficient, but are challenging to interpret due to the lack of a fast radiative transfer model for simulating them. This paper describes a variational algorithm that incorporates a fast forward model based on the time-dependent two-stream approximation, and its adjoint. Application of the algorithm to simulated data from a hypothetical airborne three-FOV lidar with a maximum footprint width of 600m suggests that this approach should be able to retrieve the extinction structure down to an optical depth of around 6, and total opticaldepth up to at least 35, depending on the maximum lidar FOV. The convergence behavior of Gauss-Newton and quasi-Newton optimization schemes are compared. We then present results from an application of the algorithm to observations of stratocumulus by the 8-FOV airborne “THOR” lidar. It is demonstrated how the averaging kernel can be used to diagnose the effective vertical resolution of the retrieved profile, and therefore the depth to which information on the vertical structure can be recovered. This work enables exploitation of returns from spaceborne lidar and radar subject to multiple scattering more rigorously than previously possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper completes the review of the theory of self-adjoint extensions of symmetric operators for physicists as a basis for constructing quantum-mechanical observables. It contains a comparative presentation of the well-known methods and a newly proposed method for constructing ordinary self-adjoint differential operators associated with self-adjoint differential expressions in terms of self-adjoint boundary conditions. The new method has the advantage that it does not require explicitly evaluating deficient subspaces and deficiency indices (these latter are determined in passing) and that boundary conditions are of explicit character irrespective of the singularity of a differential expression. General assertions and constructions are illustrated by examples of well-known quantum-mechanical operators like momentum and Hamiltonian.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential alpha x(-2). Although the problem is quite old and well studied, we believe that our consideration based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in our previous works, adds some new points to its solution. To demonstrate that a consideration of the Calogero problem requires mathematical accuracy, we discuss some `paradoxes` inherent in the `naive` quantum-mechanical treatment. Using a self-adjoint extension method, we construct and study all possible self-adjoint operators (self-adjoint Hamiltonians) associated with a formal differential expression for the Calogero Hamiltonian. In particular, we discuss a spontaneous scale-symmetry breaking associated with self-adjoint extensions. A complete spectral analysis of all self-adjoint Hamiltonians is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a mathematically rigorous quantum-mechanical treatment of a one-dimensional non-relativistic motion of a particle in the potential field V(x) = g(1)x(-1) + g(2)x(-2), x is an element of R(+) = [0, infinity). For g(2) > 0 and g(1) < 0, the potential is known as the Kratzer potential V(K)(x) and is usually used to describe molecular energy and structure, interactions between different molecules and interactions between non-bonded atoms. We construct all self-adjoint Schrodinger operators with the potential V(x) and represent rigorous solutions of the corresponding spectral problems. Solving the first part of the problem, we use a method of specifying self-adjoint extensions by (asymptotic) self-adjoint boundary conditions. Solving spectral problems, we follow Krein`s method of guiding functionals. This work is a continuation of our previous works devoted to the Coulomb, Calogero and Aharonov-Bohm potentials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E(N+1) - E(n))t). The gap E(N+1) - E(n) can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m(b) in HQET.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work propounds an inverse method to estimate the heat sources in the transient two-dimensional heat conduction problem in a rectangular domain with convective bounders. The non homogeneous partial differential equation (PDE) is solved using the Integral Transform Method. The test function for the heat generation term is obtained by the chip geometry and thermomechanical cutting. Then the heat generation term is estimated by the conjugated gradient method (CGM) with adjoint problem for parameter estimation. The experimental trials were organized to perform six different conditions to provide heat sources of different intensities. This method was compared with others in the literature and advantages are discussed. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality control of medical radiological systems is of fundamental importance, and requires efficient methods for accurately determine the X-ray source spectrum. Straightforward measurements of X-ray spectra in standard operating require the limitation of the high photon flux, and therefore the measure has to be performed in a laboratory. However, the optimal quality control requires frequent in situ measurements which can be only performed using a portable system. To reduce the photon flux by 3 magnitude orders an indirect technique based on the scattering of the X-ray source beam by a solid target is used. The measured spectrum presents a lack of information because of transport and detection effects. The solution is then unfolded by solving the matrix equation that represents formally the scattering problem. However, the algebraic system is ill-conditioned and, therefore, it is not possible to obtain a satisfactory solution. Special strategies are necessary to circumvent the ill-conditioning. Numerous attempts have been done to solve this problem by using purely mathematical methods. In this thesis, a more physical point of view is adopted. The proposed method uses both the forward and the adjoint solutions of the Boltzmann transport equation to generate a better conditioned linear algebraic system. The procedure has been tested first on numerical experiments, giving excellent results. Then, the method has been verified with experimental measurements performed at the Operational Unit of Health Physics of the University of Bologna. The reconstructed spectra have been compared with the ones obtained with straightforward measurements, showing very good agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesh adaptation based on error estimation has become a key technique to improve th eaccuracy o fcomputational-fluid-dynamics computations. The adjoint-based approach for error estimation is one of the most promising techniques for computational-fluid-dynamics applications. Nevertheless, the level of implementation of this technique in the aeronautical industrial environment is still low because it is a computationally expensive method. In the present investigation, a new mesh refinement method based on estimation of truncation error is presented in the context of finite-volume discretization. The estimation method uses auxiliary coarser meshes to estimate the local truncation error, which can be used for driving an adaptation algorithm. The method is demonstrated in the context of two-dimensional NACA0012 and three-dimensional ONERA M6 wing inviscid flows, and the results are compared against the adjoint-based approach and physical sensors based on features of the flow field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In different problems of Elasticity the definition of the optimal gcometry of the boundary, according to a given objective function, is an issue of great interest. Finding the shape of a hole in the middle of a plate subjected to an arbitrary loading such that the stresses along the hole minimizes some functional or the optimal middle curved concrete vault for a tunnel along which a uniform minimum compression are two typical examples. In these two examples the objective functional depends on the geometry of the boundary that can be either a curve (in case of 2D problems) or a surface boundary (in 3D problems). Typically, optimization is achieved by means of an iterative process which requires the computation of gradients of the objective function with respect to design variables. Gradients can by computed in a variety of ways, although adjoint methods either continuous or discrete ones are the more efficient ones when they are applied in different technical branches. In this paper the adjoint continuous method is introduced in a systematic way to this type of problems and an illustrative simple example, namely the finding of an optimal shape tunnel vault immersed in a linearly elastic terrain, is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.