938 resultados para Adaptive neuro-fuzzy inference system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Choosing a project manager for a construction project—particularly, large projects—is a critical project decision. The selection process involves different criteria and should be in accordance with company policies and project specifications. Traditionally, potential candidates are interviewed and the most qualified are selected in compliance with company priorities and project conditions. Precise computing models that could take various candidates’ information into consideration and then pinpoint the most qualified person with a high degree of accuracy would be beneficial. On the basis of the opinions of experienced construction company managers, this paper, through presenting a fuzzy system, identifies the important criteria in selecting a project manager. The proposed fuzzy system is based on IF-THEN rules; a genetic algorithm improves the overall accuracy as well as the functions used by the fuzzy system to make initial estimates of the cluster centers for fuzzy c-means clustering. Moreover, a back-propagation neutral network method was used to train the system. The optimal measures of the inference parameters were identified by calculating the system’s output error and propagating this error within the system. After specifying the system parameters, the membership function parameters—which by means of clustering and projection were approximated—were tuned with the genetic algorithm. Results from this system in selecting project managers show its high capability in making high-quality personnel predictions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cruise control in motor vehicles enhances safe and efficient driving by maintaining a constant speed at a preset level. Adaptive Cruise Control (ACC) is the latest development in cruise control. It controls engine throttle position and braking to maintain a safe distance behind a vehicle in front by responding to the speed of this vehicle, thus providing a safer and more relaxing driving environment. ACC can be further developed by including the look-ahead method of predicting environmental factors such as wind speed and road slope. The conventional analytical control methods for adaptive cruise control can generate good results; however they are difficult to design and computationally expensive. In order to achieve a robust, less computationally expensive, and at the same time more natural human-like speed control, intelligent control techniques can be used. This paper presents an Adaptive Neuro-Fuzzy Inference System (ANFIS) based on ACC systems that reduces the energy consumption of the vehicle and improves its efficiency. The Adaptive Cruise Control Look-Ahead (ACC-LA) system works as follows: It calculates the energy consumption of the vehicle under combined dynamic loads like wind drag, slope, kinetic energy and rolling friction using road data, and it includes a look-ahead strategy to predict the future road slope. The cruise control system adaptively controls the vehicle speed based on the preset speed and the predicted future slope information. By using the ANFIS method, the ACC-LA is made adaptive under different road conditions (slope angle and wind direction and speed). The vehicle was tested using the adaptive cruise control look-ahead energy management system, the results compared with the vehicle running the same test but without the adaptive cruise control look-ahead energy management system. The evaluation outcome indicates that the vehicle speed was efficiently controlled through the look-ahead methodology based upon the driving cycle, and that the average fuel consumption was reduced by 3%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic Evolving Neural-Fuzzy Inference System (DENFIS) is a Takagi-Sugeno-type fuzzy inference system for online learning which can be applied for dynamic time series prediction. Data from Heshui catchment (2,275 km2) which is rural catchment in China, comprising daily time series of rainfall and discharge from January 1, 1990 to January 21, 2006 were analyzed. Rainfall and discharge antecedents were the inputs used for the DENFIS and ANFIS models and the output was discharge at the present time. DENFIS model results were compared with the results obtained from the physically-based University Regina Hydrologic Model (URHM) and an Adaptive Network-based Fuzzy Inference System (ANFIS) which employs offline learning. Our analysis shows that DENFIS results are better or at least comparable to URHM, but almost identical to ANFIS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic Evolving Neural-Fuzzy Inference System (DENFIS) is a Takagi-Sugeno-type fuzzy inference system for online learning which can be applied for dynamic time series prediction. To the best of our knowledge, this is the first time that DENFIS has been used for rainfall-runoff (R-R) modeling. DENFIS model results were compared to the results obtained from the physically-based Storm Water Management Model (SWMM) and an Adaptive Network-based Fuzzy Inference System (ANFIS) which employs offline learning. Data from a small (5.6 km2) catchment in Singapore, comprising 11 separated storm events were analyzed. Rainfall was the only input used for the DENFIS and ANFIS models and the output was discharge at the present time. It is concluded that DENFIS results are better or at least comparable to SWMM, but similar to ANFIS. These results indicate a strong potential for DENFIS to be used in R-R modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces an approach to classify EEG signals using wavelet transform and a fuzzy standard additive model (FSAM) with tabu search learning mechanism. Wavelet coefficients are ranked based on statistics of the Wilcoxon test. The most informative coefficients are assembled to form a feature set that serves as inputs to the tabu-FSAM. Two benchmark datasets, named Ia and Ib, downloaded from the brain-computer interface (BCI) competition II are employed for the experiments. Classification performance is evaluated using accuracy, mutual information, Gini coefficient and F-measure. Widely-used classifiers, including feedforward neural network, support vector machine, k-nearest neighbours, ensemble learning Adaboost and adaptive neuro-fuzzy inference system, are also implemented for comparisons. The proposed tabu-FSAM method considerably dominates the competitive classifiers, and outperforms the best performance on the Ia and Ib datasets reported in the BCI competition II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach to EEG signal classification for brain-computer interface (BCI) application using fuzzy standard additive model is introduced in this paper. The Wilcoxon test is employed to rank wavelet coefficients. Top ranking wavelets are used to form a feature set that serves as inputs to the fuzzy classifiers. Experiments are carried out using two benchmark datasets, Ia and Ib, downloaded from the BCI competition II. Prevalent classifiers including feedforward neural network, support vector machine, k-nearest neighbours, ensemble learning Adaboost and adaptive neuro-fuzzy inference system are also implemented for comparisons. Experimental results show the dominance of the proposed method against competing approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an open access article under the CC BY-NC-ND license.Neuro-Fuzzy Systems (NFS) are computational intelligence tools that have recently been employed in hydrological modeling. In many of the common NFS the learning algorithms used are based on batch learning where all the parameters of the fuzzy system are optimized off-line. Although these models have frequently been used, there is a criticism on such learning process as the number of rules are needed to be predefined by the user. This will reduce the flexibility of the NFS architecture while dealing with different data with different level of complexity. On the other hand, online or local learning evolves through local adjustments in the model as new data is introduced in sequence. In this study, dynamic evolving neural fuzzy inference system (DENFIS) is used in which an evolving, online clustering algorithm called the Evolving Clustering Method (ECM) is implemented. ECM is an online, maximum distance-based clustering method which is able to estimate the number of clusters in a data set and find their current centers in the input space through its fast, one-pass algorithm. The 10-minutes rainfall-runoff time series from a small (23.22 km2) tropical catchment named Sungai Kayu Ara in Selangor, Malaysia, was used in this study. Out of the 40 major events, 12 were used for training and 28 for testing. Results obtained by DENFIS were then compared with the ones obtained by physically-based rainfall-runoff model HEC-HMS and a regression model ARX. It was concluded that DENFIS results were comparable to HEC-HMS and superior to ARX model. This indicates a strong potential for DENFIS to be used in rainfall-runoff modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Humans have a limited ability to accurately and continuously analyse large amount of data. In recent times, there has been a rapid growth in patient monitoring and medical data analysis using smart monitoring systems. Fuzzy logic-based expert systems, which can mimic human thought processes in complex circumstances, have indicated potential to improve clinicians' performance and accurately execute repetitive tasks to which humans are ill-suited. The main goal of this study is to develop a clinically useful diagnostic alarm system based on fuzzy logic for detecting critical events during anaesthesia administration. Method. The proposed diagnostic alarm system called fuzzy logic monitoring system (FLMS) is presented. New diagnostic rules and membership functions (MFs) are developed. In addition, fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS), and clustering techniques are explored for developing the FLMS' diagnostic modules. The performance of FLMS which is based on fuzzy logic expert diagnostic systems is validated through a series of offline tests. The training and testing data set are selected randomly from 30 sets of patients' data. Results. The accuracy of diagnoses generated by the FLMS was validated by comparing the diagnostic information with the one provided by an anaesthetist for each patient. Kappa-analysis was used for measuring the level of agreement between the anaesthetist's and FLMS's diagnoses. When detecting hypovolaemia, a substantial level of agreement was observed between FLMS and the human expert (the anaesthetist) during surgical procedures. Conclusion. The diagnostic alarm system FLMS demonstrated that evidence-based expert diagnostic systems can diagnose hypovolaemia, with a substantial degree of accuracy, in anaesthetized patients and could be useful in delivering decision support to anaesthetists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important and difficult issue in designing a Fuzzy Inference System (FIS) is the specification of fuzzy sets, and fuzzy rules. The aim of this paper is to demonstrate how an additional qualitative information, i.e., monotonicity property, can be exploited and extended to be part of an FIS designing procedure (i.e., fuzzy sets and fuzzy rules design). In this paper, the FIS is employed as an alternative to the use of addition in aggregating the scores from test items/tasks in a Criterion-Referenced Assessment (CRA) model. In order to preserve the monotonicity property, the sufficient conditions of the FIS is proposed. Our proposed FIS based CRA procedure can be viewed as an enhancement for the FIS based CRA procedure, where monotonicity property is preserved. We demonstrate the applicability of the proposed approach with a case study related to a laboratory project assessment task at a university, and the results indicate the usefulness of the proposed approach in the CRA domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a combination of fuzzy standard additive model (SAM) with wavelet features for medical diagnosis. Wavelet transformation is used to reduce the dimension of high-dimensional datasets. This helps to improve the convergence speed of supervised learning process of the fuzzy SAM, which has a heavy computational burden in high-dimensional data. Fuzzy SAM becomes highly capable when deployed with wavelet features. This combination remarkably reduces its computational training burden. The performance of the proposed methodology is examined for two frequently used medical datasets: the lump breast cancer and heart disease. Experiments are deployed with a five-fold cross validation. Results demonstrate the superiority of the proposed method compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. Faster convergence but higher accuracy shows a win-win solution of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principle of ratios has been applied to many real world problems, e.g. the part-to-part and part-to-whole ratio formulations. As it is difficult for humans to provide an exact ratio in many real situations, we introduce a fuzzy ratio in this paper. We use some notions from fuzzy arithmetic to analyze fuzzy ratios captured from humans. An application of the formulated fuzzy ratio to a Single Input Rule Modules connected Fuzzy Inference System (SIRMs-FIS) is demonstrated. Instead of using a precise weight, fuzzy sets are employed to represent the relative importance of each rule module. The resulting fuzzy weights are explained as a fuzzy ratio on a weight domain. In addition, a new SIRMs-FIS model with fuzzy weights and part-to-whole fuzzy ratio is devised. A simulated example is presented to clarify the proposed SIRM-FIS model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear, noisy and outlier characteristics of electroencephalography (EEG) signals inspire the employment of fuzzy logic due to its power to handle uncertainty. This paper introduces an approach to classify motor imagery EEG signals using an interval type-2 fuzzy logic system (IT2FLS) in a combination with wavelet transformation. Wavelet coefficients are ranked based on the statistics of the receiver operating characteristic curve criterion. The most informative coefficients serve as inputs to the IT2FLS for the classification task. Two benchmark datasets, named Ia and Ib, downloaded from the brain-computer interface (BCI) competition II, are employed for the experiments. Classification performance is evaluated using accuracy, sensitivity, specificity and F-measure. Widely-used classifiers, including feedforward neural network, support vector machine, k-nearest neighbours, AdaBoost and adaptive neuro-fuzzy inference system, are also implemented for comparisons. The wavelet-IT2FLS method considerably dominates the comparable classifiers on both datasets, and outperforms the best performance on the Ia and Ib datasets reported in the BCI competition II by 1.40% and 2.27% respectively. The proposed approach yields great accuracy and requires low computational cost, which can be applied to a real-time BCI system for motor imagery data analysis.