850 resultados para Adaptive filters


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The low complexity of IIR adaptive filters (AFs) is specially appealing to realtime applications but some drawbacks have been preventing their widespread use so far. For gradient based IIR AFs, adverse operational conditions cause convergence problems in system identification scenarios: underdamped and clustered poles, undermodelling or non-white input signals lead to error surfaces where the adaptation nearly stops on large plateaus or get stuck at sub-optimal local minima that can not be identified as such a priori. Furthermore, the non-stationarity in the input regressor brought by the filter recursivity and the approximations made by the update rules of the stochastic gradient algorithms constrain the learning step size to small values, causing slow convergence. In this work, we propose IIR performance enhancement strategies based on hybrid combinations of AFs that achieve higher convergence rates than ordinary IIR AFs while keeping the stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A aquisição experimental de sinais neuronais é um dos principais avanços da neurociência. Por meio de observações da corrente e do potencial elétricos em uma região cerebral, é possível entender os processos fisiológicos envolvidos na geração do potencial de ação, e produzir modelos matemáticos capazes de simular o comportamento de uma célula neuronal. Uma prática comum nesse tipo de experimento é obter leituras a partir de um arranjo de eletrodos posicionado em um meio compartilhado por diversos neurônios, o que resulta em uma mistura de sinais neuronais em uma mesma série temporal. Este trabalho propõe um modelo linear de tempo discreto para o sinal produzido durante o disparo do neurônio. Os coeficientes desse modelo são calculados utilizando-se amostras reais dos sinais neuronais obtidas in vivo. O processo de modelagem concebido emprega técnicas de identificação de sistemas e processamento de sinais, e é dissociado de considerações sobre o funcionamento biofísico da célula, fornecendo uma alternativa de baixa complexidade para a modelagem do disparo neuronal. Além disso, a representação por meio de sistemas lineares permite idealizar um sistema inverso, cuja função é recuperar o sinal original de cada neurônio ativo em uma mistura extracelular. Nesse contexto, são discutidas algumas soluções baseadas em filtros adaptativos para a simulação do sistema inverso, introduzindo uma nova abordagem para o problema de separação de spikes neuronais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the major problems associated with communication via a loudspeaking telephone (LST) is that, using analogue processing, duplex transmission is limited to low-loss lines and produces a low acoustic output. An architectural for an instrument has been developed and tested, which uses digital signal processing to provide duplex transmission between a LST and a telopnone handset over most of the B.T. network. Digital adaptive-filters are used in the duplex LST to cancel coupling between the loudspeaker and microphone, and across the transmit to receive paths of the 2-to-4-wire converter. Normal movement of a person in the acoustic path causes a loss of stability by increasing the level of coupling from the loudspeaker to the microphone, since there is a lag associated the adaptive filters learning about a non-stationary path, Control of the loop stability and the level of sidetone heard by the hadset user is by a microprocessoe, which continually monitors the system and regulates the gain. The result is a system which offers the best compromise available based on a set of measured parameters.A theory has been developed which gives the loop stability requirements based on the error between the parameters of the filter and those of the unknown path. The programme to develope a low-cost adaptive filter in LST produced a low-cost adaptive filter in LST produced a unique architecture which has a number of features not available in any similar system. These include automatic compensation for the rate of adaptation over a 36 dB range of output level, , 4 rates of adaptation (with a maximum of 465 dB/s), plus the ability to cascade up to 4 filters without loss o performance. A complex story has been developed to determine the adptation which can be achieved using finite-precision arithmatic. This enabled the development of an architecture which distributed the normalisation required to achieve optimum rate of adaptation over the useful input range. Comparison of theory and measurement for the adaptive filter show very close agreement. A single experimental LST was built and tested on connections to hanset telephones over the BT network. The LST demonstrated that duplex transmission was feasible using signal processing and produced a more comfortable means of communication beween people than methods emplying deep voice-switching to regulate the local-loop gain. Although, with the current level of processing power, it is not a panacea and attention must be directed toward the physical acoustic isolation between loudspeaker and microphone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple but efficient voice activity detector based on the Hilbert transform and a dynamic threshold is presented to be used on the pre-processing of audio signals -- The algorithm to define the dynamic threshold is a modification of a convex combination found in literature -- This scheme allows the detection of prosodic and silence segments on a speech in presence of non-ideal conditions like a spectral overlapped noise -- The present work shows preliminary results over a database built with some political speech -- The tests were performed adding artificial noise to natural noises over the audio signals, and some algorithms are compared -- Results will be extrapolated to the field of adaptive filtering on monophonic signals and the analysis of speech pathologies on futures works

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a robust and low complexity scheme to estimate and track carrier frequency from signals traveling under low signal-to-noise ratio (SNR) conditions in highly nonstationary channels. These scenarios arise in planetary exploration missions subject to high dynamics, such as the Mars exploration rover missions. The method comprises a bank of adaptive linear predictors (ALP) supervised by a convex combiner that dynamically aggregates the individual predictors. The adaptive combination is able to outperform the best individual estimator in the set, which leads to a universal scheme for frequency estimation and tracking. A simple technique for bias compensation considerably improves the ALP performance. It is also shown that retrieval of frequency content by a fast Fourier transform (FFT)-search method, instead of only inspecting the angle of a particular root of the error predictor filter, enhances performance, particularly at very low SNR levels. Simple techniques that enforce frequency continuity improve further the overall performance. In summary we illustrate by extensive simulations that adaptive linear prediction methods render a robust and competitive frequency tracking technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin A palmitate has been used in cosmetics; however, studies report that this substance shows photoreactivity that can lead to loss of safety and efficacy. On the other hand, photostabilizers have been used to increase sunscreen photostability and consequently their safety and effectiveness. Thus, this study aimed to evaluate the influence of photostabilizers on the photoprotective effects of a cosmetic formulation containing UV-filters and vitamin A palmitate. The formulation containing UV-filters was supplemented with vitamin A palmitate and the photostabilizers diethylhexyl 2,6-naphthalate (DEHN), bumetrizole and benzotriazolyl dodecyl p-cresol (BTDC). Hairless mice were treated daily by topical applications and irradiated (UVA/B). Erythema index, transepidermal water loss, histological/histometric analysis and number of sunburn cells (SBC) were evaluated. The results showed that all formulations protected from UV-induced enhancement of erythema and SBC but there was no difference among them. The formulation with no stabilizers reduced viable epidermis thickness due to atrophy induced by UV radiation. Thus, it can be concluded that the presence of photostabilizers influenced the effects of formulations containing UV-filters and vitamin A palmitate, which could be seen by histological and histometric analysis. Furthermore, the formulations containing the stabilizers DEHN and BTDC showed better protective effects on hairless mice skin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters.A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed.In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements.The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basic concepts of digital signal processing are taught to the students in engineering and science. The focus of the course is on linear, time invariant systems. The question as to what happens when the system is governed by a quadratic or cubic equation remains unanswered in the vast majority of literature on signal processing. Light has been shed on this problem when John V Mathews and Giovanni L Sicuranza published the book Polynomial Signal Processing. This book opened up an unseen vista of polynomial systems for signal and image processing. The book presented the theory and implementations of both adaptive and non-adaptive FIR and IIR quadratic systems which offer improved performance than conventional linear systems. The theory of quadratic systems presents a pristine and virgin area of research that offers computationally intensive work. Once the area of research is selected, the next issue is the choice of the software tool to carry out the work. Conventional languages like C and C++ are easily eliminated as they are not interpreted and lack good quality plotting libraries. MATLAB is proved to be very slow and so do SCILAB and Octave. The search for a language for scientific computing that was as fast as C, but with a good quality plotting library, ended up in Python, a distant relative of LISP. It proved to be ideal for scientific computing. An account of the use of Python, its scientific computing package scipy and the plotting library pylab is given in the appendix Initially, work is focused on designing predictors that exploit the polynomial nonlinearities inherent in speech generation mechanisms. Soon, the work got diverted into medical image processing which offered more potential to exploit by the use of quadratic methods. The major focus in this area is on quadratic edge detection methods for retinal images and fingerprints as well as de-noising raw MRI signals

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As improvements to the optical design of spectrometer and radiometer instruments evolve with advances in detector sensitivity, use of focal plane detector arrays and innovations in adaptive optics for large high altitude telescopes, interest in mid-infrared astronomy and remote sensing applications have been areas of progressive research in recent years. This research has promoted a number of developments in infrared coating performance, particularly by placing increased demands on the spectral imaging requirements of filters to precisely isolate radiation between discrete wavebands and improve photometric accuracy. The spectral design and construction of multilayer filters to accommodate these developments has subsequently been an area of challenging thin-film research, to achieve high spectral positioning accuracy, environmental durability and aging stability at cryogenic temperatures, whilst maximizing the far-infrared performance. In this paper we examine the design and fabrication of interference filters in instruments that utilize the mid-infrared N-band (6-15 µm) and Q-band (16-28 µm) atmospheric windows, together with a rationale for the selection of materials, deposition process, spectral measurements and assessment of environmental durability performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algorithm for adaptive IIR filtering that uses prefiltering structure in direct form is presented. This structure has an estimation error that is a linear function of the coefficients. This property greatly simplifies the derivation of gradient-based algorithms. Computer simulations show that the proposed structure improves convergence speed.