979 resultados para Adaptative large neighborhood search


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents hybrid Constraint Programming (CP) and metaheuristic methods for the solution of Large Scale Optimization Problems; it aims at integrating concepts and mechanisms from the metaheuristic methods to a CP-based tree search environment in order to exploit the advantages of both approaches. The modeling and solution of large scale combinatorial optimization problem is a topic which has arisen the interest of many researcherers in the Operations Research field; combinatorial optimization problems are widely spread in everyday life and the need of solving difficult problems is more and more urgent. Metaheuristic techniques have been developed in the last decades to effectively handle the approximate solution of combinatorial optimization problems; we will examine metaheuristics in detail, focusing on the common aspects of different techniques. Each metaheuristic approach possesses its own peculiarities in designing and guiding the solution process; our work aims at recognizing components which can be extracted from metaheuristic methods and re-used in different contexts. In particular we focus on the possibility of porting metaheuristic elements to constraint programming based environments, as constraint programming is able to deal with feasibility issues of optimization problems in a very effective manner. Moreover, CP offers a general paradigm which allows to easily model any type of problem and solve it with a problem-independent framework, differently from local search and metaheuristic methods which are highly problem specific. In this work we describe the implementation of the Local Branching framework, originally developed for Mixed Integer Programming, in a CP-based environment. Constraint programming specific features are used to ease the search process, still mantaining an absolute generality of the approach. We also propose a search strategy called Sliced Neighborhood Search, SNS, that iteratively explores slices of large neighborhoods of an incumbent solution by performing CP-based tree search and encloses concepts from metaheuristic techniques. SNS can be used as a stand alone search strategy, but it can alternatively be embedded in existing strategies as intensification and diversification mechanism. In particular we show its integration within the CP-based local branching. We provide an extensive experimental evaluation of the proposed approaches on instances of the Asymmetric Traveling Salesman Problem and of the Asymmetric Traveling Salesman Problem with Time Windows. The proposed approaches achieve good results on practical size problem, thus demonstrating the benefit of integrating metaheuristic concepts in CP-based frameworks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse réalisée en cotutelle entre l'Université de Montréal et l'Université de Technologie de Troyes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents our work on analysing the high level search within a graph based hyperheuristic. The graph based hyperheuristic solves the problem at a higher level by searching through permutations of graph heuristics rather than the actual solutions. The heuristic permutations are then used to construct the solutions. Variable Neighborhood Search, Steepest Descent, Iterated Local Search and Tabu Search are compared. An analysis of their performance within the high level search space of heuristics is also carried out. Experimental results on benchmark exam timetabling problems demonstrate the simplicity and efficiency of this hyperheuristic approach. They also indicate that the choice of the high level search methodology is not crucial and the high level search should explore the heuristic search space as widely as possible within a limited searching time. This simple and general graph based hyperheuristic may be applied to a range of timetabling and optimisation problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents our work on analysing the high level search within a graph based hyperheuristic. The graph based hyperheuristic solves the problem at a higher level by searching through permutations of graph heuristics rather than the actual solutions. The heuristic permutations are then used to construct the solutions. Variable Neighborhood Search, Steepest Descent, Iterated Local Search and Tabu Search are compared. An analysis of their performance within the high level search space of heuristics is also carried out. Experimental results on benchmark exam timetabling problems demonstrate the simplicity and efficiency of this hyperheuristic approach. They also indicate that the choice of the high level search methodology is not crucial and the high level search should explore the heuristic search space as widely as possible within a limited searching time. This simple and general graph based hyperheuristic may be applied to a range of timetabling and optimisation problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The U.S. railroad companies spend billions of dollars every year on railroad track maintenance in order to ensure safety and operational efficiency of their railroad networks. Besides maintenance costs, other costs such as train accident costs, train and shipment delay costs and rolling stock maintenance costs are also closely related to track maintenance activities. Optimizing the track maintenance process on the extensive railroad networks is a very complex problem with major cost implications. Currently, the decision making process for track maintenance planning is largely manual and primarily relies on the knowledge and judgment of experts. There is considerable potential to improve the process by using operations research techniques to develop solutions to the optimization problems on track maintenance. In this dissertation study, we propose a range of mathematical models and solution algorithms for three network-level scheduling problems on track maintenance: track inspection scheduling problem (TISP), production team scheduling problem (PTSP) and job-to-project clustering problem (JTPCP). TISP involves a set of inspection teams which travel over the railroad network to identify track defects. It is a large-scale routing and scheduling problem where thousands of tasks are to be scheduled subject to many difficult side constraints such as periodicity constraints and discrete working time constraints. A vehicle routing problem formulation was proposed for TISP, and a customized heuristic algorithm was developed to solve the model. The algorithm iteratively applies a constructive heuristic and a local search algorithm in an incremental scheduling horizon framework. The proposed model and algorithm have been adopted by a Class I railroad in its decision making process. Real-world case studies show the proposed approach outperforms the manual approach in short-term scheduling and can be used to conduct long-term what-if analyses to yield managerial insights. PTSP schedules capital track maintenance projects, which are the largest track maintenance activities and account for the majority of railroad capital spending. A time-space network model was proposed to formulate PTSP. More than ten types of side constraints were considered in the model, including very complex constraints such as mutual exclusion constraints and consecution constraints. A multiple neighborhood search algorithm, including a decomposition and restriction search and a block-interchange search, was developed to solve the model. Various performance enhancement techniques, such as data reduction, augmented cost function and subproblem prioritization, were developed to improve the algorithm. The proposed approach has been adopted by a Class I railroad for two years. Our numerical results show the model solutions are able to satisfy all hard constraints and most soft constraints. Compared with the existing manual procedure, the proposed approach is able to bring significant cost savings and operational efficiency improvement. JTPCP is an intermediate problem between TISP and PTSP. It focuses on clustering thousands of capital track maintenance jobs (based on the defects identified in track inspection) into projects so that the projects can be scheduled in PTSP. A vehicle routing problem based model and a multiple-step heuristic algorithm were developed to solve this problem. Various side constraints such as mutual exclusion constraints and rounding constraints were considered. The proposed approach has been applied in practice and has shown good performance in both solution quality and efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the design of low cost, small autonomous surface vehicle for missions in the coastal waters and specifically for the challenging surf zone. The main objective of the vehicle design described in this paper is to address both the capability of operation at sea in relative challenging conditions and maintain a very low set of operational requirements (ease of deployment). This vehicle provides a first step towards being able to perform general purpose missions (such as data gathering or patrolling) and to at least in a relatively short distances to be able to be used in rescue operations (with very low handling requirements) such as carrying support to humans on the water. The USV is based on a commercially available fiber glass hull, it uses a directional waterjet powered by an electrical brushless motor for propulsion, thus without any protruding propeller reducing danger in rescue operations. Its small dimensions (1.5 m length) and weight allow versatility and ease of deployment. The vehicle design is described in this paper both from a hardware and software point of view. A characterization of the vehicle in terms of energy consumption and performance is provided both from test tank and operational scenario tests. An example application in search and rescue is also presented and discussed with the integration of this vehicle in the European ICARUS (7th framework) research project addressing the development and integration of robotic tools for large scale search and rescue operations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans ce mémoire, nous présentons un nouveau type de problème de confection de tour- née pour un seul véhicule avec cueillettes et livraisons et contrainte de chargement. Cette variante est motivée par des problèmes similaires rapportés dans la littérature. Le véhi- cule en question contient plusieurs piles où des colis de hauteurs différentes sont empilés durant leur transport. La hauteur totale des items contenus dans chacune des piles ne peut dépasser une certaine hauteur maximale. Aucun déplacement n’est permis lors de la li- vraison d’un colis, ce qui signifie que le colis doit être sur le dessus d’une pile au moment d’être livré. De plus, tout colis i ramassé avant un colis j et contenu dans la même pile doit être livré après j. Une heuristique à grand voisinage, basé sur des travaux récents dans le domaine, est proposée comme méthode de résolution. Des résultats numériques sont rapportés pour plusieurs instances classiques ainsi que pour de nouvelles instances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nous proposons de construire un atlas numérique 3D contenant les caractéristiques moyennes et les variabilités de la morphologie d’un organe. Nos travaux seront appliqués particulièrement à la construction d'un atlas numérique 3D de la totalité de la cornée humaine incluant la surface antérieure et postérieure à partir des cartes topographiques fournies par le topographe Orbscan II. Nous procédons tout d'abord par normalisation de toute une population de cornées. Dans cette étape, nous nous sommes basés sur l'algorithme de recalage ICP (iterative closest point) pour aligner simultanément les surfaces antérieures et postérieures d'une population de cornée vers les surfaces antérieure et postérieure d'une cornée de référence. En effet, nous avons élaboré une variante de l'algorithme ICP adapté aux images (cartes) de cornées qui tient compte de changement d'échelle pendant le recalage et qui se base sur la recherche par voisinage via la distance euclidienne pour établir la correspondance entre les points. Après, nous avons procédé pour la construction de l'atlas cornéen par le calcul des moyennes des élévations de surfaces antérieures et postérieures recalées et leurs écarts-types associés. Une population de 100 cornées saines a été utilisée pour construire l'atlas cornéen normal. Pour visualiser l’atlas, on a eu recours à des cartes topographiques couleurs similairement à ce qu’offrent déjà les systèmes topographiques actuels. Enfin, des observations ont été réalisées sur l'atlas cornéen reflétant sa précision et permettant de développer une meilleure connaissance de l’anatomie cornéenne.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesh generation is an important step inmany numerical methods.We present the “HierarchicalGraphMeshing” (HGM)method as a novel approach to mesh generation, based on algebraic graph theory.The HGM method can be used to systematically construct configurations exhibiting multiple hierarchies and complex symmetry characteristics. The hierarchical description of structures provided by the HGM method can be exploited to increase the efficiency of multiscale and multigrid methods. In this paper, the HGMmethod is employed for the systematic construction of super carbon nanotubes of arbitrary order, which present a pertinent example of structurally and geometrically complex, yet highly regular, structures. The HGMalgorithm is computationally efficient and exhibits good scaling characteristics. In particular, it scales linearly for super carbon nanotube structures and is working much faster than geometry-based methods employing neighborhood search algorithms. Its modular character makes it conducive to automatization. For the generation of a mesh, the information about the geometry of the structure in a given configuration is added in a way that relates geometric symmetries to structural symmetries. The intrinsically hierarchic description of the resulting mesh greatly reduces the effort of determining mesh hierarchies for multigrid and multiscale applications and helps to exploit symmetry-related methods in the mechanical analysis of complex structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of binary morphological operators that are translation-invariant and locally defined by a finite neighborhood window corresponds to the problem of designing Boolean functions. As in any supervised classification problem, morphological operators designed from a training sample also suffer from overfitting. Large neighborhood tends to lead to performance degradation of the designed operator. This work proposes a multilevel design approach to deal with the issue of designing large neighborhood-based operators. The main idea is inspired by stacked generalization (a multilevel classifier design approach) and consists of, at each training level, combining the outcomes of the previous level operators. The final operator is a multilevel operator that ultimately depends on a larger neighborhood than of the individual operators that have been combined. Experimental results show that two-level operators obtained by combining operators designed on subwindows of a large window consistently outperform the single-level operators designed on the full window. They also show that iterating two-level operators is an effective multilevel approach to obtain better results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the sequencing of Multi-Mixed-Model Assembly Lines in a lean manufacturing environment, where an operational structure where several kanbans support several mixed-model assembly lines, so that all assembly lines can receive parts or sub-assemblies from all suppliers. To optimize this system, the sequencing seeks to minimize the distance between the real consumption and the constant ideal consumption of parts or subassemblies, thereby reducing the scaling of kanbans and intermediate stocks. To solve the sequencing problems, the method Clustering Search was applied along with the metaheuristics Variable Neighborhood Search, Simulation Annealing and Iterative Local Search. Instances from the literature and generated instances were tested, thus allowing comparing the methods to each other and with other methods presented in the literature. The performance of the Clustering Search with Iterated Local Search stands out by the quality and robustness of their solutions, and mainly for its efficiency, whereas it converges to better results at a lower computational cost