883 resultados para Acute respiratory infection
Resumo:
Rationale: IL-17A is purported to help drive early pathogenesis in acute respiratory distress syndrome (ARDS) by enhancing neutrophil recruitment. Whilst IL-17A is the archetypal cytokine of T helper (Th)17 cells, it is produced by a number of lymphocytes, the source during ARDS being unknown.
Objectives: To identify the cellular source and the role of IL17A in the early phase of lung injury
Methods: Lung injury was induced in WT (C57BL/6) and IL-17 KO mice with aerosolised LPS (100 µg) or Pseudomonas aeruginosa infection. Detailed phenotyping of the cells expressing RORγt, the transcriptional regulator of IL-17 production, in the mouse lung at 24 hours was carried out by flow cytometry.
Measurement and Main Results: A 100-fold reduction in neutrophil infiltration was observed in the lungs of the IL-17A KO compared to wild type (WT) mice. The majority of RORγt+ cells in the mouse lung were the recently identified type 3 innate lymphoid cells (ILC3). Detailed characterisation revealed these pulmonary ILC3s (pILC3s) to be discrete from those described in the gut. The critical role of these cells was verified by inducing injury in Rag2 KO mice which lack T cells but retain ILCs. No amelioration of pathology was observed in the Rag2 KO mice.
Conclusions: IL-17 is rapidly produced during lung injury and significantly contributes to early immunopathogenesis. This is orchestrated largely by a distinct population of pILC3 cells. Modulation of pILC3s’ activity may potentiate early control of the inflammatory dysregulation seen in ARDS, opening up new therapeutic targets.
Resumo:
The nuclear magnetic resonance (NMR) structure of a central segment of the previously annotated severe acute respiratory syndrome (SARS)-unique domain (SUD-M, for "middle of the SARS-unique domain") in SARS coronavirus (SARS-CoV) nonstructural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3 residues 528 to 648, and there is a flexibly extended N-terminal tail with the residues 513 to 527 and a C-terminal flexible tail of residues 649 to 651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527 to 651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly(A) and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In a further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1 ''-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows three-dimensional structure homology with several helicases and nucleoside triphosphate-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection.
Resumo:
Although in different groups, the coronaviruses severe acute respiratory syndrome-coronavirus (SARS-CoV) and NL63 use the same receptor, angiotensin converting enzyme (ACE)-2, for entry into the host cell. Despite this common receptor, the consequence of entry is very different; severe respiratory distress in the case of SARS-CoV but frequently only a mild respiratory infection for NL63. Using a wholly recombinant system, we have investigated the ability of each virus receptor-binding protein, spike or S protein, to bind to ACE-2 in solution and on the cell surface. In both assays, we find that the NL63 S protein has a weaker interaction with ACE-2 than the SARS-CoV S protein, particularly in solution binding, but the residues required for contact are similar. We also confirm that the ACE-2-binding site of NL63 S lies between residues 190 and 739. A lower-affinity interaction with ACE-2 might partly explain the different pathological consequences of infection by SARS-CoV and NL63.
Resumo:
This paper describes the structure determination of nsp3a, the N-terminal domain of the severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 3. nsp3a exhibits a ubiquitin-like globular fold of residues 1 to 112 and a flexibly extended glutamic acid-rich domain of residues 113 to 183. In addition to the four beta-strands and two alpha-helices that are common to ubiquitin-like folds, the globular domain of nsp3a contains two short helices representing a feature that has not previously been observed in these proteins. Nuclear magnetic resonance chemical shift perturbations showed that these unique structural elements are involved in interactions with single-stranded RNA. Structural similarities with proteins involved in various cell-signaling pathways indicate possible roles of nsp3a in viral infection and persistence.
Resumo:
Severe acute respiratory syndrome (SARS) coronavirus (SCoV) spike (S) protein is the major surface antigen of the virus and is responsible for receptor binding and the generation of neutralizing antibody. To investigate SCoV S protein, full-length and individual domains of S protein were expressed on the surface of insect cells and were characterized for cleavability and reactivity with serum samples obtained from patients during the convalescent phase of SARS. S protein could be cleaved by exogenous trypsin but not by coexpressed furin, suggesting that the protein is not normally processed during infection. Reactivity was evident by both flow cytometry and Western blot assays, but the pattern of reactivity varied according to assay and sequence of the antigen. The antibody response to SCoV S protein involves antibodies to both linear and conformational epitopes, with linear epitopes associated with the carboxyl domain and conformational epitopes associated with the amino terminal domain. Recombinant SCoV S protein appears to be a suitable antigen for the development of an efficient and sensitive diagnostic test for SARS, but our data suggest that assay format and choice of S antigen are important considerations.
Resumo:
Context Lung-protective mechanical ventilation with the use of lower tidal volumes has been found to improve outcomes of patients with acute respiratory distress syndrome (ARDS). It has been suggested that use of lower tidal volumes also benefits patients who do not have ARDS. Objective To determine whether use of lower tidal volumes is associated with improved outcomes of patients receiving ventilation who do not have ARDS. Data Sources MEDLINE, CINAHL, Web of Science, and Cochrane Central Register of Controlled Trials up to August 2012. Study Selection Eligible studies evaluated use of lower vs higher tidal volumes in patients without ARDS at onset of mechanical ventilation and reported lung injury development, overall mortality, pulmonary infection, atelectasis, and biochemical alterations. Data Extraction Three reviewers extracted data on study characteristics, methods, and outcomes. Disagreement was resolved by consensus. Data Synthesis Twenty articles (2822 participants) were included. Meta-analysis using a fixed-effects model showed a decrease in lung injury development (risk ratio [RR], 0.33; 95% CI, 0.23 to 0.47; I-2, 0%; number needed to treat [NNT], 11), and mortality (RR, 0.64; 95% CI, 0.46 to 0.89; I-2, 0%; NNT, 23) in patients receiving ventilation with lower tidal volumes. The results of lung injury development were similar when stratified by the type of study (randomized vs nonrandomized) and were significant only in randomized trials for pulmonary infection and only in nonrandomized trials for mortality. Meta-analysis using a random-effects model showed, in protective ventilation groups, a lower incidence of pulmonary infection (RR, 0.45; 95% CI, 0.22 to 0.92; I-2, 32%; NNT, 26), lower mean (SD) hospital length of stay (6.91 [2.36] vs 8.87 [2.93] days, respectively; standardized mean difference [SMD], 0.51; 95% CI, 0.20 to 0.82; I-2, 75%), higher mean (SD) PaCO2 levels (41.05 [3.79] vs 37.90 [4.19] mm Hg, respectively; SMD, -0.51; 95% CI, -0.70 to -0.32; I-2, 54%), and lower mean (SD) pH values (7.37 [0.03] vs 7.40 [0.04], respectively; SMD, 1.16; 95% CI, 0.31 to 2.02; I-2, 96%) but similar mean (SD) ratios of PaO2 to fraction of inspired oxygen (304.40 [65.7] vs 312.97 [68.13], respectively; SMD, 0.11; 95% CI, -0.06 to 0.27; I-2, 60%). Tidal volume gradients between the 2 groups did not influence significantly the final results. Conclusions Among patients without ARDS, protective ventilation with lower tidal volumes was associated with better clinical outcomes. Some of the limitations of the meta-analysis were the mixed setting of mechanical ventilation (intensive care unit or operating room) and the duration of mechanical ventilation. JAMA. 2012;308(16):1651-1659 www.jama.com
Resumo:
The surveillance of pneumococcal antibiotic resistance and serotype distribution is hampered by the relatively low numbers of invasive pneumococcal infections. In Switzerland, a nationwide sentinel surveillance network was used to assess antibiotic resistance and serotype distribution among 1179 pneumococcal isolates cultured from 2769 nasopharyngeal swabs obtained from outpatients with acute otitis media or pneumonia during 1998 and 1999. The proportion of penicillin-susceptible pneumococcal isolates overall (87%) and among infants <2 years old (81%) was comparable to that of invasive isolates (90% and 81%, respectively). The high number of nasopharyngeal isolates allowed for the detection of a rapid increase in the number of penicillin-nonsusceptible pneumococcal (PNSP) strains in the West region of Switzerland, partly because of an epidemic caused by the 19F clone of Streptococcus pneumoniae. Clustering of risk factors for the carriage of PNSP isolates further explained the geographic variation in resistance rates. The nationwide sentinel surveillance of nasopharyngeal pneumococcus proved to be valuable for the monitoring of antibiotic resistance, risk factors for carriage of PNSP isolates, and serotype distribution and for the detection of the emergence of a new epidemic clone.
Resumo:
Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) are life- threatening disorders that can result from many severe conditions and diseases. Since the American European Consensus Conference established the internationally accepted definition of ALI and ARDS, the epidemiology of pediatric ALI/ARDS has been described in some developed countries. In the developing world, however, there are very few data available regarding the burden, etiologies, management, outcome, and factors associated with outcomes of ALI/ARDS in children. ^ Therefore, we conducted this observational, clinical study to estimate the prevalence and case mortality rate of ALI/ARDS among a cohort of patients admitted to the pediatric intensive care unit (PICU) of the National Hospital of Pediatrics in Hanoi, the largest children's hospital in Vietnam. Etiologies and predisposing factors, and management strategies for pediatric ALI/ARDS were described. In addition, we determined the prevalence of HIV infection among children with ALI/ARDS in Vietnam. We also identified the causes of mortality and predictors of mortality and prolonged mechanical ventilation of children with ALI/ARDS. ^ A total of 1,051 patients consecutively admitted to the pediatric intensive care unit from January 2011 to January 2012 were screened daily for development of ALI/ARDS using the American-European Consensus Conference Guidelines. All identified patients with ALI/ARDS were followed until hospital discharge or death in the hospital. Patients' demographic and clinical data were collected. Multivariable logistic regression models were developed to identify independent predictors of mortality and other adverse outcome of ALI/ARDS. ^ Prevalence of ALI and ARDS was 9.6% (95% confidence interval, 7.8% to 11.4%) and 8.8% (95% confidence interval, 7.0% to 10.5%) of total PICU admissions, respectively. Infectious pneumonia and sepsis were the most common causes of ALI/ARDS accounting for 60.4% and 26.7% of cases, respectively. Prevalence of HIV infection among children with ALI/ARDS was 3.0%. The case fatality rate of ALI/ARDS was 63.4% (95% confidence interval, 53.8% to 72.9%). Multiple organ failure and refractory hypoxemia were the main causes of death. Independent predictors of mortality and prolonged mechanical ventilation were male gender, duration of intensive care stay prior to ALI/ARDS diagnosis, level of oxygenation defect measured by PaO2/FiO2 ratio at ALI/ARDS diagnosis, presence of non-pulmonary organ dysfunction at day one and day three after ALI/ARDS diagnosis, and presence of hospital acquired infection. ^ The results of this study demonstrated that ALI/ARDS was a common and severe condition in children in Vietnam. The level of both pulmonary and non-pulmonary organ damage influenced survival of patients with ALI/ARDS. Strategies for preventing ALI/ARDS and for clinical management of the disease are necessary to reduce the associated risks.^
Resumo:
Viruses are the major cause of pediatric acute respiratory tract infection (ARTI) and yet many suspected cases of infection remain uncharacterized. We employed 17 PCR assays and retrospectively screened 315 specimens selected by season from a predominantly pediatric hospital-based population. Before the Brisbane respiratory virus research study commenced, one or more predominantly viral pathogens had been detected in 15.2% (n = 48) of all specimens. The Brisbane study made an additional 206 viral detections, resulting in the identification of a microbe in 67.0% of specimens. After our study, the majority of microbes detected were RNA viruses (89.9%). Overall, human rhinoviruses (HRVs) were the most frequently identified target (n=140) followed by human adenoviruses (HAdVs; n = 25), human metapneumovirus (HMPV; n=18), human bocavirus (HBoV; n = 15), human respiratory syncytial virus (HRSV; n = 12), human coronaviruses (HCoVs; n = 11), and human herpesvirus-6 (n = 11). HRVs were the sole microbe detected in 37.8% (n = 31) of patients with suspected lower respiratory tract infection (LRTI). Genotyping of the HRV VP4/VP2 region resulted in a proposed subdivision of HRV type A into sublineages A1 and A2. Most of the genotyped HAdV strains were found to be type C. This study describes the high microbial burden imposed by HRVs, HMPV, HRSV, HCoVs, and the newly identified virus, HBoV on a predominantly paediatric hospital population with suspected acute respiratory tract infections and proposes a new formulation of viral targets for future diagnostic research studies.
Resumo:
BACKGROUND: We used four years of paediatric severe acute respiratory illness (SARI) sentinel surveillance in Blantyre, Malawi to identify factors associated with clinical severity and co-viral clustering.
METHODS: From January 2011 to December 2014, 2363 children aged 3 months to 14 years presenting to hospital with SARI were enrolled. Nasopharyngeal aspirates were tested for influenza and other respiratory viruses. We assessed risk factors for clinical severity and conducted clustering analysis to identify viral clusters in children with co-viral detection.
RESULTS: Hospital-attended influenza-positive SARI incidence was 2.0 cases per 10,000 children annually; it was highest children aged under 1 year (6.3 cases per 10,000), and HIV-infected children aged 5 to 9 years (6.0 cases per 10,000). 605 (26.8%) SARI cases had warning signs, which were positively associated with HIV infection (adjusted risk ratio [aRR]: 2.4, 95% CI: 1.4, 3.9), RSV infection (aRR: 1.9, 95% CI: 1.3, 3.0) and rainy season (aRR: 2.4, 95% CI: 1.6, 3.8). We identified six co-viral clusters; one cluster was associated with SARI with warning signs.
CONCLUSIONS: Influenza vaccination may benefit young children and HIV infected children in this setting. Viral clustering may be associated with SARI severity; its assessment should be included in routine SARI surveillance.
Resumo:
Background In developing countries, infectious diseases such as diarrhoea and acute respiratory infections are the main cause of mortality and morbidity in infants aged less than one year. The importance of exclusive breastfeeding in the prevention of infectious diseases during infancy is well known. Although breastfeeding is almost universal in Bangladesh, the rates of exclusive breastfeeding remain low. This cohort study was designed to compare the prevalence of diarrhoea and acute respiratory infection (ARI) in infants according to their breastfeeding status in a prospective cohort of infants from birth to six months of age. Methods A total of 351 pregnant women were recruited in the Anowara subdistrict of Chittagong. Breastfeeding practices and the 7-day prevalence of diarrhoea and ARI were recorded at monthly home visits. Prevalences were compared using chi-squared tests and logistic regression. Results A total of 272 mother-infant pairs completed the study to six months. Infants who were exclusively breastfed for six months had a significantly lower 7-day prevalence of diarrhoea [AOR for lack of EBF = 2.50 (95%CI 1.10, 5.69), p = 0.03] and a significantly lower 7-day prevalence of ARI [AOR for lack of EBF = 2.31 (95%CI 1.33, 4.00), p < 0.01] than infants who were not exclusively breastfed. However, when the association between patterns of infant feeding (exclusive, predominant and partial breastfeeding) and illness was investigated in more detail, there was no significant difference in the prevalence of diarrhoea between exclusively [6.6% (95% CI 2.8, 10.4)] and predominantly breastfed infants [3.7% (95% CI 0.09, 18.3), (p = 0.56)]. Partially breastfed infants had a higher prevalence of diarrhoea than the others [19.2% (95% CI 10.4, 27.9), (p = 0.01)]. Similarly, although there was a large difference in prevalence in acute respiratory illness between exclusively [54.2% (95%CI 46.6, 61.8)] and predominantly breastfed infants [70.4% (95%CI 53.2, 87.6)] there was no significant difference in the prevalence (p = 0.17). Conclusion The findings suggest that exclusive or predominant breastfeeding can reduce rates of morbidity significantly in this region of rural Bangladesh.
Resumo:
Deleterious responses to pathogens during infancy may contribute to infection and associated asthma. Chlamydia respiratory infections in early life are common causes of pneumonia and lead to reduced lung function and asthma. We investigated the role of interleukin-13 (IL-13) in promoting early-life Chlamydia respiratory infection, infection-induced airway hyperresponsiveness (AHR), and severe allergic airway disease (AAD). Infected infant Il13−/− mice had reduced infection, inflammation, and mucus-secreting cell hyperplasia. Surprisingly, infection of wild-type (WT) mice did not increase IL-13 production but reduced IL-13Rα2 decoy receptor levels compared with sham-inoculated controls. Infection of WT but not Il13−/− mice induced persistent AHR. Infection and associated pathology were restored in infected Il13−/− mice by reconstitution with IL-13. Stat6−/− mice were also largely protected. Neutralization of IL-13 during infection prevented subsequent infection-induced severe AAD. Thus, early-life Chlamydia respiratory infection reduces IL-13Rα2 production, which may enhance the effects of constitutive IL-13 and promote more severe infection, persistent AHR, and AAD.
Resumo:
Background Acute respiratory illness, a leading cause of cough in children, accounts for a substantial proportion of childhood morbidity and mortality worldwide. In some children acute cough progresses to chronic cough (> 4 weeks duration), impacting on morbidity and decreasing quality of life. Despite the importance of chronic cough as a cause of substantial childhood morbidity and associated economic, family and social costs, data on the prevalence, predictors, aetiology and natural history of the symptom are scarce. This study aims to comprehensively describe the epidemiology, aetiology and outcomes of cough during and after acute respiratory illness in children presenting to a tertiary paediatric emergency department. Methods/design A prospective cohort study of children aged <15 years attending the Royal Children's Hospital Emergency Department, Brisbane, for a respiratory illness that includes parent reported cough (wet or dry) as a symptom. The primary objective is to determine the prevalence and predictors of chronic cough (>= 4 weeks duration) post presentation with acute respiratory illness. Demographic, epidemiological, risk factor, microbiological and clinical data are completed at enrolment. Subjects complete daily cough dairies and weekly follow-up contacts for 28(+/-3) days to ascertain cough persistence. Children who continue to cough for 28 days post enrolment are referred to a paediatric respiratory physician for review. Primary analysis will be the proportion of children with persistent cough at day 28(+/-3). Multivariate analyses will be performed to evaluate variables independently associated with chronic cough at day 28(+/-3). Discussion Our protocol will be the first to comprehensively describe the natural history, epidemiology, aetiology and outcomes of cough during and after acute respiratory illness in children. The results will contribute to studies leading to the development of evidence-based clinical guidelines to improve the early detection and management of chronic cough in children during and after acute respiratory illness.