978 resultados para Acute promyelocytic leukemia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed the incidence, presenting features, risk factors of extramedullary (EM) relapse occurring in acute promyelocytic leukemia (APL) treated with all-trans retinoic acid (ATRA) and chemotherapy by using a competing-risk method. In total, 740/ 806 (92%) patients included in three multicenter trials (APL91, APL93 trials and PETHEMA 96) achieved CR, of whom 169 (23%) relapsed, including 10 EM relapses. Nine relapses involved the central nervous system (CNS) and one the skin, of which two were isolated EM relapse. In patients with EM disease, median WBC count was 26950/mm3 (7700-162000). The 3-year cumulative incidence of EM disease at first relapse was 5.0%. Univariate analysis identified age <45 years (P=0.05), bcr3 PML-RARalpha isoform (P= 0.0003) and high WBC counts (> or = 10,000/ mm3) (P<0.0001) as risk factors for EM relapse. In multivariate analysis, only high WBC count remained significant (P= 0.001). Patients with EM relapse had a poorer outcome since median survival from EM relapse was 6.7 months as compared to 26.3 months for isolated BM relapse (P=0.04). In conclusion, EM relapse in APL occurs more frequently in patients with increased WBC counts (> or = 10,000/mm3) and carries a poor prognosis. Whether CNS prophylaxis should be systematically performed in patients with WBC > or = 10,000/mm3 at diagnosis remains to be established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All-trans retinoic acid (ATRA) plus anthracycline chemotherapy is the reference treatment of newly diagnosed acute promyelocytic leukemia (APL), whereas the role of cytosine arabinoside (AraC) remains disputed. We performed a joint analysis of patients younger than 65 years included in Programa para el Estudio de la Terapéutica en Hemopatía Maligna (PETHEMA) LPA 99 trial, where patients received no AraC in addition to ATRA, high cumulative dose idarubicin, and mitoxantrone, and APL 2000 trial, where patients received AraC in addition to ATRA and lower cumulative dose daunorubicin. In patients with white blood cell (WBC) count less than 10 x 10(9)/L, complete remission (CR) rates were similar, but 3-year cumulative incidence of relapse (CIR) was significantly lower in LPA 99 trial: 4.2% versus 14.3% (P = .03), although 3-year survival was similar in both trials. This suggested that AraC is not required in APL with WBC count less than 10 x 10(9)/L, at least in trials with high-dose anthracycline and maintenance treatment. In patients with WBC of 10 x 10(9)/L or more, however, the CR rate (95.1% vs 83.6% P = .018) and 3-year survival (91.5% vs 80.8%, P = .026) were significantly higher in APL 2000 trial, and there was a trend for lower 3-year CIR (9.9% vs 18.5%, P = .12), suggesting a beneficial role for AraC in those patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the WD-repeat protein interacting with phosphoinositides (WIPI) family are phosphatidylinositol 3-phosphate (PI3P) effectors that are essential for the formation of autophagosomes. Autophagosomes, unique double-membraned organelles, are characteristic for autophagy, a bulk degradation mechanism with cytoprotective and homeostatic function. Both, WIPI-1 and WIPI-2 are aberrantly expressed in several solid tumors, linking these genes to carcinogenesis. We now found that the expression of WIPI-1 was significantly reduced in a large cohort of 98 primary acute myeloid leukemia (AML) patient samples (complex karyotypes; t(8;21); t(15,17); inv(16)). In contrast, the expression of WIPI-2 was only reduced in acute promyelocytic leukemia (APL), a distinct subtype of AML (t(15,17)). As AML cells are blocked in their differentiation, we tested if the expression levels of WIPI-1 and WIPI-2 increase during all-trans retinoic acid (ATRA)-induced neutrophil differentiation of APL. According to the higher WIPI-1 expression in granulocytes compared with immature blast cells, WIPI-1 but not WIPI-2 expression was significantly induced during neutrophil differentiation of NB4 APL cells. Interestingly, the induction of WIPI-1 expression was dependent on the transcription factor PU.1, a master regulator of myelopoiesis, supporting our notion that WIPI-1 expression is reduced in AML patients lacking proper PU-1 activity. Further, knocking down WIPI-1 in NB4 cells markedly attenuated the autophagic flux and significantly reduced neutrophil differentiation. This result was also achieved by knocking down WIPI-2, suggesting that both WIPI-1 and WIPI-2 are functionally required and not redundant in mediating the PI3P signal at the onset of autophagy in NB4 cells. In line with these data, downregulation of PI3KC3 (hVPS34), which generates PI3P upstream of WIPIs, also inhibited neutrophil differentiation. In conclusion, we demonstrate that both WIPI-1 and WIPI-2 are required for the PI3P-dependent autophagic activity during neutrophil differentiation, and that PU.1-dependent WIPI-1 expression is significantly repressed in primary AML patient samples and that the induction of autophagic flux is associated with neutrophil differentiation of APL cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoic acid receptors (RARs) are hormone-regulated transcription factors that control key aspects of normal differentiation. Aberrant RAR activity may be a causal factor in neoplasia. Human acute promyelocytic leukemia, for example, is tightly linked to chromosomal translocations that fuse novel amino acid sequences (denoted PML, PLZF, and NPM) to the DNA-binding and hormone-binding domains of RARα. The resulting chimeric receptors have unique transcriptional properties that may contribute to leukemogenesis. Normal RARs repress gene transcription by associating with ancillary factors denoted corepressors (also referred to as SMRT, N-CoR, TRAC, or RIP13). We report here that the PML-RARα and PLZF-RARα oncoproteins retain the ability of RARα to associate with corepressors, and that this corepressor association correlates with certain aspects of the leukemic phenotype. Unexpectedly, the PLZF moiety itself can interact with SMRT corepressor. This interaction with corepressor is mediated, in part, by a POZ motif within PLZF. Given the presence of POZ motifs in a number of known transcriptional repressors, similar interactions with SMRT may play a role in transcriptional silencing by a variety of both receptor and nonreceptor transcription factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PML/RARα is the abnormal protein product generated by the acute promyelocytic leukemia-specific t(15;17). Expression of PML/RARα in hematopoietic precursor cell lines induces block of differentiation and promotes survival. We report here that PML/RARα has a potent growth inhibitory effect on all nonhematopoietic cell lines and on the majority of the hematopoietic cell lines tested. Inducible expression of PML/RARα in fibroblasts demonstrated that the basis for the growth suppression is induction of cell death. Deletion of relevant promyelocytic leukemia (PML) and retinoic acid receptor (RARα) domains within the fusion protein revealed that its growth inhibitory effect depends on the integrity of the PML aminoterminal region (RING, B1, B2, and coiled coil regions) and the RARα DNA binding region. Analysis of the nuclear localization of the same PML/RARα deletion mutants by immunofluorescence and cell fractionation revealed that the biological activity of the fusion protein correlates with its microspeckled localization and its association to the nuclear matrix. The PML aminoterminal region, but not the RARα zinc fingers, is required for the proper nuclear localization of PML/RARα. We propose that the matrix-associated microspeckles are the active sites of PML/RARα and that targeting of RARα sequences to this specific nuclear subdomain through PML sequences is crucial to the activity of the fusion protein on survival regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a cell line (NB4) derived from a patient with acute promyelocytic leukemia, all-trans-retinoic acid (ATRA) and interferon (IFN) induce the expression of a novel gene we call RIG-G (for retinoic acid-induced gene G). This gene codes for a 58-kDa protein containing 490 amino acids with several potential sites for post-translational modification. In untreated NB4 cells, the expression of RIG-G is undetectable. ATRA treatment induces the transcriptional expression of RIG-G relatively late (12–24 hr) in a protein synthesis-dependent manner, whereas IFN-α induces its expression early (30 min to 3 hr). Database search has revealed a high-level homology between RIG-G and several IFN-stimulated genes in human (ISG54K, ISG56K, and IFN-inducible and retinoic acid-inducible 58K gene) and some other species, defining a well conserved gene family. The gene is composed of two exons and has been mapped by fluorescence in situ hybridization to chromosome 10q24, where two other human IFN-stimulated gene members are localized. A synergistic induction of RIG-G expression in NB4 cells by combined treatment with ATRA and IFNs suggests that a collaboration exists between their respective signaling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APML) most often is associated with the balanced reciprocal translocation t(15;17) (q22;q11.2) and the expression of both the PML-RARα and RARα-PML fusion cDNAs that are formed by this translocation. In this report, we investigated the biological role of a bcr-3 isoform of RARα-PML for the development of APML in a transgenic mouse model. Expression of RARα-PML alone in the early myeloid cells of transgenic mice did not alter myeloid development or cause APML, but its expression significantly increased the penetrance of APML in mice expressing a bcr-1 isoform of PML-RARα (15% of animals developed APML with PML-RARα alone vs. 57% with both transgenes, P < 0.001). The latency of APML development was not altered substantially by the expression of RARα-PML, suggesting that it does not behave as a classical “second hit” for development of the disease. Leukemias that arose from doubly transgenic mice were less mature than those from PML-RARα transgenic mice, but they both responded to all-trans retinoic acid in vitro. These findings suggest that PML-RARα drives the development of APML and defines its basic phenotype, whereas RARα-PML potentiates this phenotype via mechanisms that are not yet understood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously generated a transgenic mouse model for acute promyelocytic leukemia (APL) by expressing the promyelocytic leukemia (PML)–retinoic acid receptor (RARα) cDNA in early myeloid cells. This fusion protein causes a myeloproliferative disease in 100% of animals, but only 15–20% of the animals develop acute leukemia after a long latency period (6–13 months). PML-RARα is therefore necessary, but not sufficient, for APL development. The coexpression of a reciprocal form of the fusion, RARα-PML, increased the likelihood of APL development (55–60%), but did not shorten latency. Together, these results suggested that additional genetic events are required for the development of APL. We therefore evaluated the splenic tumor cells from 18 transgenic mice with APL for evidence of secondary genetic events, by using spectral karyotyping analysis. Interstitial or terminal deletions of the distal region of one copy of chromosome 2 [del(2)] were found in 1/5 tumors expressing PML-RARα, but in 11/13 tumors expressing both PML-RARα and RARα-PML (P < 0.05). Leukemic cells that contained a deletion on chromosome 2 often contained additional chromosomal gains (especially of 15), chromosomal losses (especially of 11 or X/Y), or were tetraploid (P ≤ 0.001). These changes did not commonly occur in nontransgenic littermates, nor in aged transgenic mice that did not develop APL. These results suggest that expression of RARα-PML increases the likelihood of chromosome 2 deletions in APL cells. Deletion 2 appears to predispose APL cells to further chromosomal instability, which may lead to the acquisition of additional changes that provide an advantage to the transformed cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) is associated with chromosomal translocations always involving the RARα gene, which variably fuses to one of several distinct loci, including PML or PLZF (X genes) in t(15;17) or t(11;17), respectively. APL in patients harboring t(15;17) responds well to retinoic acid (RA) treatment and chemotherapy, whereas t(11;17) APL responds poorly to both treatments, thus defining a distinct syndrome. Here, we show that RA, As2O3, and RA + As2O3 prolonged survival in either leukemic PML-RARα transgenic mice or nude mice transplanted with PML-RARα leukemic cells. RA + As2O3 prolonged survival compared with treatment with either drug alone. In contrast, neither in PLZF-RARα transgenic mice nor in nude mice transplanted with PLZF-RARα cells did any of the three regimens induce complete disease remission. Unexpectedly, therapeutic doses of RA and RA + As2O3 can induce, both in vivo and in vitro, the degradation of either PML-RARα or PLZF-RARα proteins, suggesting that the maintenance of the leukemic phenotype depends on the continuous presence of the former, but not the latter. Our findings lead to three major conclusions with relevant therapeutic implications: (i) the X-RARα oncoprotein directly determines response to treatment and plays a distinct role in the maintenance of the malignant phenotype; (ii) As2O3 and/or As2O3 + RA combination may be beneficial for the treatment of t(15;17) APL but not for t(11;17) APL; and (iii) therapeutic strategies aimed solely at degrading the X-RARα oncoprotein may not be effective in t(11;17) APL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vivo all-trans-retinoic acid (ATRA), a differentiation inducer, is capable of causing clinical remission in about 90% of patients with acute promyelocytic leukemia (APL). The molecular basis for the differentiation of APL cells after treatment with ATRA remains obscure and may involve genes other than the known retinoid nuclear transcription factors. We report here the ATRA-induced gene expression in a cell line (NB4) derived from a patient with APL. By differential display-PCR, we isolated and characterized a novel gene (RIG-E) whose expression is up-regulated by ATRA. The gene is 4.0 kb long, consisting of four exons and three introns, and is localized on human chromosome region 8q24. The deduced amino acid sequence predicts a cell surface protein containing 20 amino acids at the N-terminal end corresponding to a signal peptide and an extracellular sequence containing 111 amino acids. The RIG-E coded protein shares some homology with CD59 and with a number of growth factor receptors. It shares high sequence homology with the murine LY-6 multigene family, whose members are small cysteine-rich proteins differentially expressed in several hematopoietic cell lines and appear to function in signal transduction. It seems that so far RIG-E is the closest human homolog of the LY-6 family. Expression of RIG-E is not restricted to myeloid differentiation, because it is also present in thymocytes and in a number of other tissues at different levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex which is disrupted in the APL disease state. Here, two newly defined cysteine/histidine-rich protein motifs called the B-box (B1 and B2) from PML have been characterized in terms of their effect on PML nuclear body formation, their dimerization, and their biophysical properties. We have shown that both peptides bind Zn2+, which induces changes in the peptides' structures. We demonstrate that mutants in both B1 and B2 do not form PML nuclear bodies in vivo and have a phenotype that is different from that observed in the APL disease state. Interestingly, these mutations do not affect the ability of wild-type PML to dimerize with mutant proteins in vitro, suggesting that the B1 and B2 domains are involved in an additional interaction central to PML nuclear body formation. This report in conjunction with our previous work demonstrates that the PML RING-Bl/B2 motif plays a fundamental role in formation of a large multiprotein complex, a function that may be common to those unrelated proteins which contain the motif.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present article, two new types of PML/RARA junctions are described. Both were identified in diagnostic samples from two t(15;17)(q22;q21)-positive acute promyelocytic leukemia (APL) patients who failed to achieve complete remission. By using different sets of primers, reverse transcriptase polymerase chain reaction (RT-PCR) of PML/RARA junctions showed atypical larger bands compared with those generated from the three classical PML breakpoints already described. Sequence analysis of the fusion region of the amplified cDNAs allowed us to determine the specificity of these fragments in both patients. This analysis showed two new hybrid transcripts that were 53 and 306 base pairs (bp) longer than that expressed by the NB4 cell line (PML breakpoint within intron 6), and are the result of the direct joining of RARA exon 3 with PML exon 7a (patient 2) or the 5' portion of PML exon 7b (patient 1), respectively. In patient 1, RT-PCR analysis of the reciprocal RARA/PML junction showed a smaller transcript than that expected in bcr1 cases, while in patient 2 no amplified fragment was obtained. Cytogenetic analysis and/or fluorescence in situ hybridization (FISH) showed that both patients had the t(15;17) translocation. The clinical and hematological profiles expressed by the two patients carrying these unexpected types of PML/RARA rearrangement did not differ significantly from that commonly seen in other APLs with the exception of the poor outcome. Genes Chromosomes Cancer 27:35-43, 2000.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idea that within the bulk of leukemic cells there are immature progenitors which are intrinsically resistant to chemotherapy and able to repopulate the tumor after treatment is not recent. Nevertheless, the term leukemia stem cells (LSCs) has been adopted recently to describe these immature progenitors based on the fact that they share the most relevant features of the normal hematopoetic stem cells (HSCs), i.e. the self-renewal potential and quiescent status. LSCs differ from their normal counterparts and from the more differentiated leukemic cells regarding the default status of pathways regulating apoptosis, cell cycle, telomere maintenance and transport pumps activity. In addition, unique features regarding the interaction of these cells with the microenvironment have been characterized. Therapeutic strategies targeting these unique features are at different stages of development but the reported results are promising. The aim of this review is, by taking acute myeloid leukemia (AML) as a bona fide example, to discuss some of the mechanisms used by the LSCs to survive and the strategies which could be used to eradicate these cells.