974 resultados para Acoustic spectrograms
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
The need for large scale environmental monitoring to manage environmental change is well established. Ecologists have long used acoustics as a means of monitoring the environment in their field work, and so the value of an acoustic environmental observatory is evident. However, the volume of data generated by such an observatory would quickly overwhelm even the most fervent scientist using traditional methods. In this paper we present our steps towards realising a complete acoustic environmental observatory - i.e. a cohesive set of hardware sensors, management utilities, and analytical tools required for large scale environmental monitoring. Concrete examples of these elements, which are in active use by ecological scientists, are also presented
Resumo:
Bridges are an important part of society's infrastructure and reliable methods are necessary to monitor them and ensure their safety and efficiency. Bridges deteriorate with age and early detection of damage helps in prolonging the lives and prevent catastrophic failures. Most bridges still in used today were built decades ago and are now subjected to changes in load patterns, which can cause localized distress and if not corrected can result in bridge failure. In the past, monitoring of structures was usually done by means of visual inspection and tapping of the structures using a small hammer. Recent advancements of sensors and information technologies have resulted in new ways of monitoring the performance of structures. This paper briefly describes the current technologies used in bridge structures condition monitoring with its prime focus in the application of acoustic emission (AE) technology in the monitoring of bridge structures and its challenges.
Resumo:
This technical report is concerned with one aspect of environmental monitoring—the detection and analysis of acoustic events in sound recordings of the environment. Sound recordings offer ecologists the potential advantages of cheaper and increased sampling. An acoustic event detection algorithm is introduced that outputs a compact rectangular marquee description of each event. It can disentangle superimposed events, which are a common occurrence during morning and evening choruses. Next, three uses to which acoustic event detection can be put are illustrated. These tasks have been selected because they illustrate quite different modes of analysis: (1) the detection of diffuse events caused by wind and rain, which are a frequent contaminant of recordings of the terrestrial environment; (2) the detection of bird calls using the spatial distribution of their component events; and (3) the preparation of acoustic maps for whole ecosystem analysis. This last task utilises the temporal distribution of events over a daily, monthly or yearly cycle.
Resumo:
This technical report is concerned with one aspect of environmental monitoring—the detection and analysis of acoustic events in sound recordings of the environment. Sound recordings offer ecologists the potential advantages of cheaper and increased sampling. An acoustic event detection algorithm is introduced that outputs a compact rectangular marquee description of each event. It can disentangle superimposed events, which are a common occurrence during morning and evening choruses. Next, three uses to which acoustic event detection can be put are illustrated. These tasks have been selected because they illustrate quite different modes of analysis: (1) the detection of diffuse events caused by wind and rain, which are a frequent contaminant of recordings of the terrestrial environment; (2) the detection of bird calls using the spatial distribution of their component events; and (3) the preparation of acoustic maps for whole ecosystem analysis. This last task utilises the temporal distribution of events over a daily, monthly or yearly cycle.
Resumo:
Keyword Spotting is the task of detecting keywords of interest within continu- ous speech. The applications of this technology range from call centre dialogue systems to covert speech surveillance devices. Keyword spotting is particularly well suited to data mining tasks such as real-time keyword monitoring and unre- stricted vocabulary audio document indexing. However, to date, many keyword spotting approaches have su®ered from poor detection rates, high false alarm rates, or slow execution times, thus reducing their commercial viability. This work investigates the application of keyword spotting to data mining tasks. The thesis makes a number of major contributions to the ¯eld of keyword spotting. The ¯rst major contribution is the development of a novel keyword veri¯cation method named Cohort Word Veri¯cation. This method combines high level lin- guistic information with cohort-based veri¯cation techniques to obtain dramatic improvements in veri¯cation performance, in particular for the problematic short duration target word class. The second major contribution is the development of a novel audio document indexing technique named Dynamic Match Lattice Spotting. This technique aug- ments lattice-based audio indexing principles with dynamic sequence matching techniques to provide robustness to erroneous lattice realisations. The resulting algorithm obtains signi¯cant improvement in detection rate over lattice-based audio document indexing while still maintaining extremely fast search speeds. The third major contribution is the study of multiple veri¯er fusion for the task of keyword veri¯cation. The reported experiments demonstrate that substantial improvements in veri¯cation performance can be obtained through the fusion of multiple keyword veri¯ers. The research focuses on combinations of speech background model based veri¯ers and cohort word veri¯ers. The ¯nal major contribution is a comprehensive study of the e®ects of limited training data for keyword spotting. This study is performed with consideration as to how these e®ects impact the immediate development and deployment of speech technologies for non-English languages.
Resumo:
Automatic spoken Language Identi¯cation (LID) is the process of identifying the language spoken within an utterance. The challenge that this task presents is that no prior information is available indicating the content of the utterance or the identity of the speaker. The trend of globalization and the pervasive popularity of the Internet will amplify the need for the capabilities spoken language identi¯ca- tion systems provide. A prominent application arises in call centers dealing with speakers speaking di®erent languages. Another important application is to index or search huge speech data archives and corpora that contain multiple languages. The aim of this research is to develop techniques targeted at producing a fast and more accurate automatic spoken LID system compared to the previous National Institute of Standards and Technology (NIST) Language Recognition Evaluation. Acoustic and phonetic speech information are targeted as the most suitable fea- tures for representing the characteristics of a language. To model the acoustic speech features a Gaussian Mixture Model based approach is employed. Pho- netic speech information is extracted using existing speech recognition technol- ogy. Various techniques to improve LID accuracy are also studied. One approach examined is the employment of Vocal Tract Length Normalization to reduce the speech variation caused by di®erent speakers. A linear data fusion technique is adopted to combine the various aspects of information extracted from speech. As a result of this research, a LID system was implemented and presented for evaluation in the 2003 Language Recognition Evaluation conducted by the NIST.
Identification of acoustic emission wave modes for accurate source location in plate-like structures
Resumo:
Acoustic emission (AE) technique is a popular tool used for structural health monitoring of civil, mechanical and aerospace structures. It is a non-destructive method based on rapid release of energy within a material by crack initiation or growth in the form of stress waves. Recording of these waves by means of sensors and subsequent analysis of the recorded signals convey information about the nature of the source. Ability to locate the source of stress waves is an important advantage of AE technique; but as AE waves travel in various modes and may undergo mode conversions, understanding of the modes (‘modal analysis’) is often necessary in order to determine source location accurately. This paper presents results of experiments aimed at finding locations of artificial AE sources on a thin plate and identifying wave modes in the recorded signal waveforms. Different source locating techniques will be investigated and importance of wave mode identification will be explored.
Resumo:
Acoustic emission (AE) technique is one of the popular diagnostic techniques used for structural health monitoring of mechanical, aerospace and civil structures. But several challenges still exist in successful application of AE technique. This paper explores various tools for analysis of recorded AE data to address two primary challenges: discriminating spurious signals from genuine signals and devising ways to quantify damage levels.
Resumo:
Managing the sustainability of urban infrastructure requires regular health monitoring of key infrastructure such as bridges. The process of structural health monitoring involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors, and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures, and acoustic emission is one technique that is finding an increasing use in the monitoring of civil infrastructures such as bridges. Acoustic emission technique is based on the recording of stress waves generated by rapid release of energy inside a material, followed by analysis of recorded signals to locate and identify the source of emission and assess its severity. This chapter first provides a brief background of the acoustic emission technique and the process of source localization. Results from laboratory experiments conducted to explore several aspects of the source localization process are also presented. The findings from the study can be expected to enhance knowledge of the acoustic emission process, and to aid the development of effective bridge structure diagnostics systems.
Resumo:
This paper presents techniques which can be viewed as pre-processing step towards diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time-frequency analysis, selection of optimum frequency band. Some results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals are also outlined. The results on separation of RMS signals show this technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events.
Resumo:
Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. It is one of the several diagnostic techniques currently used for structural health monitoring (SHM) of civil infrastructure such as bridges. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. But several challenges still exist. Due to high sampling rate required for data capture, large amount of data is generated during AE testing. This is further complicated by the presence of a number of spurious sources that can produce AE signals which can then mask desired signals. Hence, an effective data analysis strategy is needed to achieve source discrimination. This also becomes important for long term monitoring applications in order to avoid massive date overload. Analysis of frequency contents of recorded AE signals together with the use of pattern recognition algorithms are some of the advanced and promising data analysis approaches for source discrimination. This paper explores the use of various signal processing tools for analysis of experimental data, with an overall aim of finding an improved method for source identification and discrimination, with particular focus on monitoring of steel bridges.
Resumo:
Bridges are an important part of a nation’s infrastructure and reliable monitoring methods are necessary to ensure their safety and efficiency. Most bridges in use today were built decades ago and are now subjected to changes in load patterns that can cause localized distress, which can result in bridge failure if not corrected. Early detection of damage helps in prolonging lives of bridges and preventing catastrophic failures. This paper briefly reviews the various technologies currently used in health monitoring of bridge structures and in particular discusses the application and challenges of acoustic emission (AE) technology. Some of the results from laboratory experiments on a bridge model are also presented. The main objectives of these experiments are source localisation and assessment. The findings of the study can be expected to enhance the knowledge of acoustic emission process and thereby aid in the development of an effective bridge structure diagnostics system.
Resumo:
Bridges are valuable assets of every nation. They deteriorate with age and often are subjected to additional loads or different load patterns than originally designed for. These changes in loads can cause localized distress and may result in bridge failure if not corrected in time. Early detection of damage and appropriate retrofitting will aid in preventing bridge failures. Large amounts of money are spent in bridge maintenance all around the world. A need exists for a reliable technology capable of monitoring the structural health of bridges, thereby ensuring they operate safely and efficiently during the whole intended lives. Monitoring of bridges has been traditionally done by means of visual inspection. Visual inspection alone is not capable of locating and identifying all signs of damage, hence a variety of structural health monitoring (SHM) techniques is used regularly nowadays to monitor performance and to assess condition of bridges for early damage detection. Acoustic emission (AE) is one technique that is finding an increasing use in SHM applications of bridges all around the world. The chapter starts with a brief introduction to structural health monitoring and techniques commonly used for monitoring purposes. Acoustic emission technique, wave nature of AE phenomenon, previous applications and limitations and challenges in the use as a SHM technique are also discussed. Scope of the project and work carried out will be explained, followed by some recommendations of work planned in future.