991 resultados para Acid Tolerance


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Listeria monocytogenes has previously been shown to adapt to a wide variety of environmental niches, principally those associated with low pH, and this compromises its control in food environments. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. The present Study aimed to gain a further understanding of the physiological basis for the differential effects of one control strategy, namely the use of the lantibiotic nisin. Using propidium iodide (PI) to probe membrane integrity it was shown that L. monocytogenes Scott A was sensitive to nisin (8 ng mL(-1)) but this was growth phase dependent with stationary phase cells (OD600=1.2) being much more resistant than exponential phase cells (OD600=0.38). We demonstrate that, using a combination of techniques including fluorescence activated cell sorting (FACS), the membrane adaptations underpinning nisin resistance are triggered much earlier (OD600 < 0.5) than the onset of stationary phase. The significance of these findings in terms of mechanism and application are discussed. (c) 2005 Elsevier B.V.All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sigma B (σB) is an alternative sigma factor that controls the transcriptional response to stress in Listeria monocytogenes and is also known to play a role in the virulence of this human pathogen. In the present study we investigated the impact of a sigB deletion on the proteome of L. monocytogenes grown in a chemically defined medium both in the presence and in the absence of osmotic stress (0.5 M NaCl). Two new phenotypes associated with the sigB deletion were identified using this medium. (i) Unexpectedly, the strain with the ΔsigB deletion was found to grow faster than the parent strain in the growth medium, but only when 0.5 M NaCl was present. This phenomenon was independent of the carbon source provided in the medium. (ii) The ΔsigB mutant was found to have unusual Gram staining properties compared to the parent, suggesting that σB contributes to the maintenance of an intact cell wall. A proteomic analysis was performed by two-dimensional gel electrophoresis, using cells growing in the exponential and stationary phases. Overall, 11 proteins were found to be differentially expressed in the wild type and the ΔsigB mutant; 10 of these proteins were expressed at lower levels in the mutant, and 1 was overexpressed in the mutant. All 11 proteins were identified by tandem mass spectrometry, and putative functions were assigned based on homology to proteins from other bacteria. Five proteins had putative functions related to carbon utilization (Lmo0539, Lmo0783, Lmo0913, Lmo1830, and Lmo2696), while three proteins were similar to proteins whose functions are unknown but that are known to be stress inducible (Lmo0796, Lmo2391, and Lmo2748). To gain further insight into the role of σB in L. monocytogenes, we deleted the genes encoding four of the proteins, lmo0796, lmo0913, lmo2391, and lmo2748. Phenotypic characterization of the mutants revealed that Lmo2748 plays a role in osmotolerance, while Lmo0796, Lmo0913, and Lmo2391 were all implicated in acid stress tolerance to various degrees. Invasion assays performed with Caco-2 cells indicated that none of the four genes was required for mammalian cell invasion. Microscopic analysis suggested that loss of Lmo2748 might contribute to the cell wall defect observed in the ΔsigB mutant. Overall, this study highlighted two new phenotypes associated with the loss of σB. It also demonstrated clear roles for σB in both osmotic and low-pH stress tolerance and identified specific components of the σB regulon that contribute to the responses observed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Zinc (Zn)-deficient soils constrain rice (Oryza sativa) production and cause Zn malnutrition. The identification of Zn-deficiency-tolerant rice lines indicates that breeding might overcome these constraints. Here, we seek to identify processes underlying Zn-deficiency tolerance in rice at the physiological and transcriptional levels. A Zn-deficiency-tolerant line RIL46 acquires Zn more efficiently and produces more biomass than its nontolerant maternal line (IR74) at low Zn(ext) under field conditions. We tested if this was the result of increased expression of Zn(2+) transporters; increased root exudation of deoxymugineic acid (DMA) or low-molecular-weight organic acids (LMWOAs); and/or increased root production. Experiments were performed in field and controlled environment conditions. There was little genotypic variation in transcript abundance of Zn-responsive root Zn(2+)-transporters between the RIL46 and IR74. However, root exudation of DMA and LMWOA was greater in RIL46, coinciding with increased root expression of putative ligand-efflux genes. Adventitious root production was maintained in RIL46 at low Zn(ext), correlating with altered expression of root-specific auxin-responsive genes. Zinc-deficiency tolerance in RIL46 is most likely the result of maintenance of root growth, increased efflux of Zn ligands, and increased uptake of Zn-ligand complexes at low Zn(ext); these traits are potential breeding targets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new cold-inducible genetic construct was cloned using a chloroplast-specific omega-3-fatty acid desaturase gene (FAD7) under the control of a cold-inducible promoter (cor15a) from Arabidopsis thaliana. RT-PCR confirmed a marked increase in FAD7 expression, in young Nicotiana tabacum (cv. Havana) plants harboring cor15a-FAD7, after a short-term exposure to cold. When young, cold-induced tobacco seedlings were exposed to low-temperature (0.5, 2 or 3.5 degrees C) for up to 44 days, survival within independent cor15a-FAD7 transgenic lines (40.2-96%) was far superior to the wild type (6.7-10.2%). In addition, the major trienoic fatty acid species remained stable in cold-induced cor15a-FAD7 N. tabacum plants under prolonged cold storage while the levels of hexadecatrienoic acid (16:3) and octadecatrienoic acid (18:3) declined in wild type plants under the same conditions (79 and 20.7% respectively). Electron microscopy showed that chloroplast membrane ultrastructure in cor15a-FAD7 transgenic plants was unaffected by prolonged exposure to cold temperatures. In contrast, wild type plants experienced a loss of granal stacking and disorganization of the thylakoid membrane under the same conditions. Changes in membrane integrity coincided with a precipitous decline in leaf chlorophyll concentration and low survival rates in wild type plants. Cold-induced double transgenic N. alata (cv. Domino Mix) plants, harboring both the cor15a-FAD7 cold-tolerance gene and a cor15a-IPT dark-tolerance gene, exhibited dramatically higher survival rates (89-90%) than wild type plants (2%) under prolonged cold storage under dark conditions (2 degrees C for 50 days).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protracted administration of diazepam elicits tolerance, whereas discontinuation of treatment results in signs of dependence. Tolerance to the anticonvulsant action of diazepam is present in an early phase (6, 24, and 36 h) but disappears in a late phase (72–96 h) of withdrawal. In contrast, signs of dependence such as decrease in open-arm entries on an elevated plus-maze and increased susceptibility to pentylenetetrazol-induced seizures were apparent 96 h (but not 12, 24, or 48 h) after diazepam withdrawal. During the first 72 h of withdrawal, tolerance is associated with changes in the expression of GABAA (γ-aminobutyric acid type A) receptor subunits (decrease in γ2 and α1; increase in α5) and with an increase of mRNA expression of the most abundant form of glutamic acid decarboxylase (GAD), GAD67. In contrast, dl-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor GluR1 subunit mRNA and cognate protein, which are normal during the early phase of diazepam withdrawal, increase by approximately 30% in cortex and hippocampus in association with the appearance of signs of dependence 96 h after diazepam withdrawal. Immunohistochemical studies of GluR1 subunit expression with gold-immunolabeling technique reveal that the increase of GluR1 subunit protein is localized to layer V pyramidal neurons and their apical dendrites in the cortex, and to pyramidal neurons and in their dendritic fields in hippocampus. The results suggest an involvement of GABA-mediated processes in the development and maintenance of tolerance to diazepam, whereas excitatory amino acid-related processes (presumably via AMPA receptors) may be involved in the expression of signs of dependence after withdrawal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Acid soils comprise up to 50% of the world's arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the Alt(SB) locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release. Methodology: Population structure was studied in 254 sorghum accessions representative of the diversity present in cultivated sorghums. Al tolerance was assessed as the degree of root growth inhibition in nutrient solution containing Al. A genetic analysis based on markers flanking Alt(SB) and SbMATE expression was undertaken to assess a possible role for Alt(SB) in Al tolerant accessions. In addition, the mode of gene action was estimated concerning the Al tolerance trait. Comparisons between models that include population structure were applied to assess the importance of each subpopulation to Al tolerance. Conclusion/Significance: Six subpopulations were revealed featuring specific racial and geographic origins. Al tolerance was found to be rather rare and present primarily in guinea and to lesser extent in caudatum subpopulations. Alt(SB) was found to play a role in Al tolerance in most of the Al tolerant accessions. A striking variation was observed in the mode of gene action for the Al tolerance trait, which ranged from almost complete recessivity to near complete dominance, with a higher frequency of partially recessive sources of Al tolerance. A possible interpretation of our results concerning the origin and evolution of Al tolerance in cultivated sorghum is discussed. This study demonstrates the importance of deeply exploring the crop diversity reservoir both for a comprehensive view of the dynamics underlying the distribution and function of Al tolerance genes and to design efficient molecular breeding strategies aimed at enhancing Al tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminum (Al) toxicity is a major worldwide agricultural problem. At low pH, Al speciates into the soluble and phyto-toxic form Al(3+), inhibiting the root growth and affecting plant development. In Brazil, agriculture in acidic soils with elevated concentration of Al has significantly increased in the last decades. Therefore, in order to achieve efficient agriculture practices, the selection of plant cultivars with improved Al resistance has become crucial in this type of soils. In this work we have evaluated the Al resistance of six genotypes of grapevine rootstocks. The grapevine hardwood cuttings were grown in nutrient solution in the absence and presence of 250 and 500 mu M Al at pH 4.2. The phenotypic indexes of relative root growth, fresh and dry root weight, root area, hematoxylin staining profile, and Al content were evaluated for all six genotypes. These phenotypic indexes allowed us to identify the `Kober 5BB`, `Gravesac`, `Paulsen 1103`, and `IAC 766` grapevine rootstocks genotypes as the ones with the highest resistance to Al. Likewise, `IAC 572` and `R110` genotypes were the most Al-sensitive cultivars. We evaluated the root organic acid exudation profile in the most Al-resistant (`Kober 5BB`) and most Al-sensitive (`R110`) in plantlets cultivated in vitro in the absence and presence of 100, 200, and 400 mu M of Al. Among several compounds detected, citrate was the only organic acid related to the Al resistance phenotype observed in the `Kober 5BB` genotype. The high constitutive citrate exudation observed in `Kober 5BB` strongly suggests that exudation of this particular organic acid may impart Al-resistance/a melioration in grapevine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil salinity is a major abiotic stress influencing plant productivity worldwide. Schinopsis quebracho colorado is one of the most important woody species in the Gran Chaco, an and and salt-prone subtropical biome of South America. To gain a better understanding of the physiological mechanisms that allow plant establishment under salt conditions, germination and seedling growth of S. quebracho colorado were examined under treatment with a range of NaCl solutions (germination: 0-300 mmol l(-1) NaCl; seedling growth: 0-200 mmol l(-1) NaCl). The aim was to test the hypothesis that S. quebracho colorado is a glycophite that shows different salt tolerance responses with development stage. Proline content, total soluble carbohydrates and Na+, K+ and Cl- concentrations in leaves and roots of seedlings, and the chlorophyll concentration and relative water content of leaves were measured. Germination was not affected by 100 mmol l(-1) NaCl, but decreased at a concentration of 200 mmol l(-1). At 300 mmol l(-1) NaCl, germination did not occur. Seedling growth decreased drastically with increasing salinity. An increase in NaCl from 0 to 100 mmol l(-1) also significantly reduced the leaf relative water content by 22% and increased the proline concentration by 60% in roots. In contrast, total soluble carbohydrates were not significantly affected by salinity. Seedlings showed a sodium exclusion capacity, and there was an inverse correlation between Cl- concentration and the total chlorophyll concentration. S. quebracho colorado was more tolerant to salinity during germination than in the seedling phase. The results suggest that this increased tolerance during germination might, in part, be the result of lower sensitivity to high tissue Na+ concentrations. The significant increment of proline in the roots suggests the positive role of this amino acid as a compatible solute in balancing the accumulation of Na+ and Cl- as a result of salinity. These results help clarify the physiological mechanisms that allow establishment of S. quebracho colorado on salt-affected soils in arid and semi-arid Gran Chaco. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anxiolytic effects of benzodiazepines are reduced after a single exposure of rats to elevated plus-maze test (EPM). Midazolam showed an anxioselective profile in animals submitted to one session (T1) but did not change the usual exploratory behavior of rats exposed twice (T2) to the EPM. In this study we examined further the one-trial tolerance by performing a factor analysis of the exploratory behavior of rats injected with saline before both trials as well as an immunohistochemistry study for quantification of Fos expression in encephalic structures after these sessions. Factor analysis of all behavioral categories revealed that factor I consisted of anxiety-related categories in T1 whereas these same behavioral categories loaded on factor 2 in T2. Risk assessment was also dissociated as it loaded stronger on T2 (factor 3) than on T1 (factor 4). Locomotor activity in T1 loaded on factor 5. Immunohistochemistry analyses showed that Fos expression predominated in limbic structures in T1 group. The medial prefrontal cortex and amygdala were the main areas activated in T2 group. These data suggest that anxiety and risk assessment behaviors change their valence across the EPM sessions. T2 is characterized by the emergence of a fear factor, more powerful risk assessment and medial prefrontal cortex activation. The amygdala functions as a switch between the anxiety-like patterns of T1 to the cognitive control of fear prevalent in T2. The EPM retest session is proposed as a tool for assessing the cognitive activity of rodents in the control of fear. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory immune response directed against myelin antigens of the central nervous system. In its murine model, EAE, Th17 cells play an important role in disease pathogenesis. These cells can induce blood-brain barrier disruption and CNS immune cells activation, due to the capacity to secrete high levels of IL-17 and IL-22 in an IL-6 + TGF-beta dependent manner. Thus, using the oral tolerance model, by which 200 mu g of MOG 35-55 is given orally to C57BL/6 mice prior to immunization, we showed that the percentage of Th17 cells as well as IL-17 secretion is reduced both in the periphery and also in the CNS of orally tolerated animals. Altogether, our data corroborates with the pathogenic role of IL-17 and IFN-gamma in EAE, as its reduction after oral tolerance, leads to an overall reduction of pro-inflammatory cytokines, such as IL-1 alpha, IL-6, IL-9, IL-12p70 and the chemokines MIP-1 beta, RANTES, Eotaxin and KC in the CNS. It is noteworthy that this was associated to an increase in IL-10 levels. Thus, our data clearly show that disease suppression after oral tolerance induction, correlates with reduction in target organ inflammation, that may be caused by a reduced Th1/Th17 response. Crown Copyright (c) 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminium (At) tolerance in plants may be conferred by reduced binding of Al in the cell wall through low root cation exchange capacity (CEC) or by organic acid exudation. Root CEC is related to the degree of esterification (DE) of pectin in the cell wall, and pectin hydrolysis plays a role in cell expansion. Therefore, it was hypothesised that Al-tolerant plants with a low root CEC maintain pectin hydrolysis in the presence of Al, allowing cell expansion to continue. Irrespective of the DE, binding of Al to pectin reduced the enzymatic hydrolysis of Al-pectin gels by polygalacturonase (E.C. 3.2.1.15). Pectin gels with calcium (Ca) were slightly hydrolysed by polygalacturonase. It was concluded, therefore, that Al tolerance conferred by low root CEC is not mediated by the ability to maintain pectin hydrolysis. Citrate and malate, but not acetate, effectively dissolved Al-pectate gel and led to hydrolysis of the dissolved pectin by polygalacturonase. The organic acids did not dissolve Ca-pectate, nor did they increase pectin hydrolysis by polygalacturonase. It was concluded that exudation of some organic acids can remove Al bound to pectin and this could alleviate toxicity, constituting a tolerance mechanism. (C) 2003 Editions scientitiques et medicales Elsevier SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poor water quality condition has been pointed out as one of the major causes for the high mortality of ornamental fishes exported from the state of Amazonas, Brazil. The purpose of the current study was to define water quality standards for cardinal tetra (Paracheirodon axelrodi), by establishing the lower and higher for lethal temperature (LT50), lethal concentration (LC50) for total ammonia and nitrite and LC50 for acid and alkaline pH. According to the findings, cardinal tetra is rather tolerant to high temperature (33.3 ºC), to a wide pH range (acid pH=2.9 and alkaline pH=8.8) and to high total ammonia concentration (23.7 mg/L). However, temperatures below 19.6 ºC and nitrite concentrations above 1.1 mg/L NO2- may compromise fish survival especially during long shipment abroad.