893 resultados para Acetyl coenzyme A carboxylase


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The properties of oxaloacetate (OA) transport into mitochondria from potato (Solanum tuberosum) tuber and pea (Pisum sativum) leaves were studied by measuring the uptake of 14C-labeled OA into liposomes with incorporated mitochondrial membrane proteins preloaded with various dicarboxylates or citrate. OA was found to be transported in an obligatory counterexchange with malate, 2-oxoglutarate, succinate, citrate, or aspartate. Phtalonate inhibited all of these countertransports. OA-malate countertransport was inhibited by 4,4′-dithiocyanostilbene-2,2′-disulfonate and pyridoxal phosphate, and also by p-chloromercuribenzene sulfonate and mersalyl, indicating that a lysine and a cysteine residue of the translocator protein are involved in the transport. From these and other inhibition studies, we concluded that plant mitochondria contain an OA translocator that differs from all other known mitochondrial translocators. Major functions of this translocator are the export of reducing equivalents from the mitochondria via the malate-OA shuttle and the export of citrate via the citrate-OA shuttle. In the cytosol, citrate can then be converted either into 2-oxoglutarate for use as a carbon skeleton for nitrate assimilation or into acetyl-coenzyme A for use as a precursor for fatty acid elongation or isoprenoid biosynthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fragrance of Clarkia breweri (Onagraceae), a California annual plant, includes three benzenoid esters: benzylacetate, benzylbenzoate, and methylsalicylate. Here we report that petal tissue was responsible for the benzylacetate and methylsalicylate emission, whereas the pistil was the main source of benzylbenzoate. The activities of two novel enzymes, acetyl-coenzyme A:benzylalcohol acetyltransferase (BEAT), which catalyzes the acetyl esterification of benzylalcohol, and S-adenosyl-l-methionine:salicylic acid carboxyl methyltransferase, which catalyzes the methyl esterification of salicylic acid, were also highest in petal tissue and absent in leaves. In addition, the activity of both enzymes in the various floral organs was developmentally and differentially regulated. S-Adenosyl-l-methionine:salicylic acid carboxyl methyltransferase activity in petals peaked in mature buds and declined during the next few days after anthesis, and it showed a strong, positive correlation with the emission of methylsalicylate. The levels of BEAT activity and benzylacetate emission in petals also increased in parallel as the buds matured and the flowers opened, but as emission began to decline on the 2nd d after anthesis, BEAT activity continued to increase and remained high until the end of the lifespan of the flower.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pathogenic protozoan parasite Entamoeba histolytica, the cause of amebic dysentery and amebic liver abscess, is an obligate anaerobe, and derives energy from the fermentation of glucose to ethanol with pyruvate and acetyl coenzyme A as intermediates. We have isolated EhADH2, a key enzyme in this pathway, that is a NAD+- and Fe2+-dependent bifunctional enzyme with acetaldehyde dehydrogenase and alcohol dehydrogenase activities. EhADH2 is the only known eukaryotic member of a newly defined family of prokaryotic multifunctional enzymes, which includes the Escherichia coli AdhE enzyme, an enzyme required for anaerobic growth of E. coli. Because of the critical role of EhADH2 in the amebic fermentation pathway and the lack of known eukaryotic homologues of the EhADH2 enzyme, EhADH2 represents a potential target for antiamebic chemotherapy. However, screening of compounds for antiamebic activity is hampered by the cost of large scale growth of Ent. histolytica, and difficulties in quantitating drug efficacy in vitro. To approach this problem, we expressed the EhADH2 gene in a mutant strain of E. coli carrying a deletion of the adhE gene. Expression of EhADH2 restored the ability of the mutant E. coli strain to grow under anaerobic conditions. By screening compounds for the ability to inhibit the anaerobic growth of the E. coli/EhADH2 strain, we have developed a rapid assay for identifying compounds with anti-EhADH2 activity. Using bacteria to bypass the need for parasite culture in the initial screening process for anti-parasitic agents could greatly simplify and reduce the cost of identifying new therapeutic agents effective against parasitic diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The plant metabolism consists of a complex network of physical and chemical events resulting in photosynthesis, respiration, synthesis and degradation of organic compounds. This is only possible due to the different kinds of responses to many environmental variations that a plant could be subject through evolution, leading also to conquering new surroundings. The glyoxylate cycle is a metabolic pathway found in glyoxysomes plant, which has unique role in the seedling establishment. Considered as a variation of the citric acid cycle, it uses an acetyl coenzyme A molecule, derived from lipids beta-oxidation to synthesize compounds which are used in carbohydrate synthesis. The Malate synthase (MLS) and Isocitrate lyase (ICL) enzyme of this cycle are unique and essential in regulating the biosynthesis of carbohydrates. Because of the absence of decarboxylation steps as rate-limiting steps, detailed studies of molecular phylogeny and evolution of these proteins enables the elucidation of the effects of this route presence in the evolutionary processes involved in their distribution across the genome from different plant species. Therefore, the aim of this study was to establish a relationship between the molecular evolution of the characteristics of enzymes from the glyoxylate cycle (isocitrate lyase and malate synthase) and their molecular phylogeny, among green plants (Viridiplantae). For this, amino acid and nucleotide sequences were used, from online repositories as UniProt and Genbank. Sequences were aligned and then subjected to an analysis of the best-fit substitution models. The phylogeny was rebuilt by distance methods (neighbor-joining) and discrete methods (maximum likelihood, maximum parsimony and Bayesian analysis). The identification of structural patterns in the evolution of the enzymes was made through homology modeling and structure prediction from protein sequences. Based on comparative analyzes of in silico models and from the results of phylogenetic inferences, both enzymes show significant structure conservation and their topologies in agreement with two processes of selection and specialization of the genes. Thus, confirming the relevance of new studies to elucidate the plant metabolism from an evolutionary perspective

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statins are known to modulate cell surface cholesterol (CSC) and AMP-activated protein kinase (AMPK) in nonneural cells; however no study demonstrates whether CSC and AMPK may regulate simvastatin induced neuritogenesis (SIN). We found that simvastatin (SIM) maintains CSC as shown by Fillipin III staining, Flotillin-2 protein expression / localization and phosphorylation of various receptor tyrosine kinases (RTKs) in the plasma membrane. Modulation of CSC revealed that SIN is critically dependent on this CSC. Simultaneously, phospho array for mitogen activated protein kinases (MAPKs) revealed PI3K / Akt as intracellular pathway which modulates lipid pathway by inhibiting AMPK activation. Though, SIM led to a transient increase in AMPK phosphorylation followed by a sudden decline; the effect was independent of PI3K. Strikingly, AMPK phosphorylation was regulated by protein phosphatase 2A (PP2A) activity which was enhanced upon SIM treatment as evidenced by increase in threonine phosphorylation. Moreover, it was observed that addition of AMP analogue and PP2A inhibitor inhibited SIN. Biocomposition of neurites shows that lipids form a major part of neurites and AMPK is known to regulate lipid metabolism majorly through acetyl CoA carboxylase (ACC). AMPK activity is negative regulator of ACC activity and we found that phosphorylation of ACC started to decrease after 6 hrs which becomes more pronounced at 12 hrs. Addition of ACC inhibitor showed that SIN is dependent on ACC activity. Simultaneously, addition of Fatty acid synthase (FAS) inhibitor confirmed that endogenous lipid pathway is important for SIN. We further investigated SREBP-1 pathway activation which controls ACC and FAS at transcriptional level. However, SIM did not affect SREBP-1 processing and transcription of its target genes likes ACC1 and FAS. In conclusion, this study highlights a distinct role of CSC and ACC in SIN which might have implication in process of neuronal differentiation induced by other agents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Spores harboring an ACC1 deletion derived from a diploid Saccharomyces cerevisiae strain, in which one copy of the entire ACC1 gene is replaced with a LEU2 cassette, fail to grow. A chimeric gene consisting of the yeast GAL10 promoter, yeast ACC1 leader, wheat cytosolic acetyl-CoA carboxylase (ACCase) cDNA, and yeast ACC1 3′ tail was used to complement a yeast ACC1 mutation. The complementation demonstrates that active wheat ACCase can be produced in yeast. At low concentrations of galactose, the activity of the “wheat gene” driven by the GAL10 promoter is low and ACCase becomes limiting for growth, a condition expected to enhance transgenic yeast sensitivity to wheat ACCase-specific inhibitors. An aryloxyphenoxypropionate and two cyclohexanediones do not inhibit growth of haploid yeast strains containing the yeast ACC1 gene, but one cyclohexanedione inhibits growth of the gene-replacement strains at concentrations below 0.2 mM. In vitro, the activity of wheat cytosolic ACCase produced by the gene-replacement yeast strain is inhibited by haloxyfop and cethoxydim at concentrations above 0.02 mM. The activity of yeast ACCase is less affected. The wheat plastid ACCase in wheat germ extract is inhibited by all three herbicides at concentrations below 0.02 mM. Yeast gene-replacement strains will provide a convenient system for the study of plant ACCases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fatty acid synthesis in chloroplasts is regulated by light. The synthesis of malonyl-CoA, which is catalyzed by acetyl-CoA carboxylase (ACCase) and is the first committed step, is modulated by light/dark. Plants have ACCase in plastids and the cytosol. To determine the possible involvement of a redox cascade in light/dark modulation of ACCase, the effect of DTT, a known reductant of S-S bonds, was examined in vitro for the partially purified ACCase from pea plant. Only the plastidic ACCase was activated by DTT. This enzyme was activated in vitro more efficiently by reduced thioredoxin, which is a transducer of redox potential during illumination, than by DTT alone. Chloroplast thioredoxin-f activated the enzyme more efficiently than thioredoxin-m. The ACCase also was activated by thioredoxin reduced enzymatically with NADPH and NADP-thioredoxin reductase. These findings suggest that the reduction of ACCase is needed for activation of the enzyme, and a redox potential generated by photosynthesis is involved in its activation through thioredoxin as for enzymes of the reductive pentose phosphate cycle. The catalytic activity of ACCase was maximum at pH 8 and 2–5 mM Mg2+, indicating that light-produced changes in stromal pH and Mg2+ concentration modulate ACCase activity. These results suggest that light directly modulates a regulatory site of plastidic prokaryotic form of ACCase via a signal transduction pathway of a redox cascade and indirectly modulates its catalytic activity via stromal pH and Mg2+ concentration. A redox cascade is likely to link between light and fatty acid synthesis, resulting in coordination of fatty acid synthesis with photosynthesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aryloxyphenoxypropionates, inhibitors of the plastid acetyl-CoA carboxylase (ACC) of grasses, also inhibit Toxoplasma gondii ACC. Clodinafop, the most effective of the herbicides tested, inhibits growth of T. gondii in human fibroblasts by 70% at 10 μM in 2 days and effectively eliminates the parasite in 2–4 days at 10–100 μM. Clodinafop is not toxic to the host cell even at much higher concentrations. Parasite growth inhibition by different herbicides is correlated with their ability to inhibit ACC enzyme activity, suggesting that ACC is a target for these agents. Fragments of genes encoding the biotin carboxylase domain of multidomain ACCs of T. gondii, Plasmodium falciparum, Plasmodium knowlesi, and Cryptosporidium parvum were sequenced. One T. gondii ACC (ACC1) amino acid sequence clusters with P. falciparum ACC, P. knowlesi ACC, and the putative Cyclotella cryptica chloroplast ACC. Another sequence (ACC2) clusters with that of C. parvum ACC, probably the cytosolic form.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of chimeral genes, consisting of the yeast GAL10 promoter, yeast ACC1 leader, wheat acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) cDNA, and yeast ACC1 3′-tail, was used to complement a yeast ACC1 mutation. These genes encode a full-length plastid enzyme, with and without the putative chloroplast transit peptide, as well as five chimeric cytosolic/plastid proteins. Four of the genes, all containing at least half of the wheat cytosolic ACCase coding region at the 5′-end, complement the yeast mutation. Aryloxyphenoxypropionate and cyclohexanedione herbicides, at concentrations below 10 μM, inhibit the growth of haploid yeast strains that express two of the chimeric ACCases. This inhibition resembles the inhibition of wheat plastid ACCase observed in vitro and in vivo. The differential response to herbicides localizes the sensitivity determinant to the third quarter of the multidomain plastid ACCase. Sequence comparisons of different multidomain and multisubunit ACCases suggest that this region includes part of the carboxyltransferase domain, and therefore that the carboxyltransferase activity of ACCase (second half-reaction) is the target of the inhibitors. The highly sensitive yeast gene-replacement strains described here provide a convenient system to study herbicide interaction with the enzyme and a powerful screening system for new inhibitors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Animals, including humans, express two isoforms of acetyl-CoA carboxylase (EC 6.4.1.2), ACC1 (Mr = 265 kDa) and ACC2 (Mr = 280 kDa). The predicted amino acid sequence of ACC2 contains an additional 136 aa relative to ACC1, 114 of which constitute the unique N-terminal sequence of ACC2. The hydropathic profiles of the two ACC isoforms generally are comparable, except for the unique N-terminal sequence in ACC2. The sequence of amino acid residues 1–20 of ACC2 is highly hydrophobic, suggesting that it is a leader sequence that targets ACC2 for insertion into membranes. The subcellular localization of ACC2 in mammalian cells was determined by performing immunofluorescence microscopic analysis using affinity-purified anti-ACC2-specific antibodies and transient expression of the green fluorescent protein fused to the C terminus of the N-terminal sequences of ACC1 and ACC2. These analyses demonstrated that ACC1 is a cytosolic protein and that ACC2 was associated with the mitochondria, a finding that was confirmed further by the immunocolocalization of a known human mitochondria-specific protein and the carnitine palmitoyltransferase 1. Based on analyses of the fusion proteins of ACC–green fluorescent protein, we concluded that the N-terminal sequences of ACC2 are responsible for mitochondrial targeting of ACC2. The association of ACC2 with the mitochondria is consistent with the hypothesis that ACC2 is involved in the regulation of mitochondrial fatty acid oxidation through the inhibition of carnitine palmitoyltransferase 1 by its product malonyl-CoA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

5′-End fragments of two genes encoding plastid-localized acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) of wheat (Triticum aestivum) were cloned and sequenced. The sequences of the two genes, Acc-1,1 and Acc-1,2, are 89% identical. Their exon sequences are 98% identical. The amino acid sequence of the biotin carboxylase domain encoded by Acc-1,1 and Acc-1,2 is 93% identical with the maize plastid ACCase but only 80–84% identical with the cytosolic ACCases from other plants and from wheat. Four overlapping fragments of cDNA covering the entire coding region were cloned by PCR and sequenced. The wheat plastid ACCase ORF contains 2,311 amino acids with a predicted molecular mass of 255 kDa. A putative transit peptide is present at the N terminus. Comparison of the genomic and cDNA sequences revealed introns at conserved sites found in the genes of other plant multifunctional ACCases, including two introns absent from the wheat cytosolic ACCase genes. Transcription start sites of the plastid ACCase genes were estimated from the longest cDNA clones obtained by 5′-RACE (rapid amplification of cDNA ends). The untranslated leader sequence encoded by the Acc-1 genes is at least 130–170 nucleotides long and is interrupted by an intron. Southern analysis indicates the presence of only one copy of the gene in each ancestral chromosome set. The gene maps near the telomere on the short arm of chromosomes 2A, 2B, and 2D. Identification of three different cDNAs, two corresponding to genes Acc-1,1 and Acc-1,2, indicates that all three genes are transcriptionally active.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Apicomplexan parasites such as Toxoplasma gondii contain a primitive plastid, the apicoplast, whose genome consists of a 35-kb circular DNA related to the plastid DNA of plants. Plants synthesize fatty acids in their plastids. The first committed step in fatty acid synthesis is catalyzed by acetyl-CoA carboxylase (ACC). This enzyme is encoded in the nucleus, synthesized in the cytosol, and transported into the plastid. In the present work, two genes encoding ACC from T. gondii were cloned and the gene structure was determined. Both ORFs encode multidomain proteins, each with an N-terminal extension, compared with the cytosolic ACCs from plants. The N-terminal extension of one isozyme, ACC1, was shown to target green fluorescent protein to the apicoplast of T. gondii. In addition, the apicoplast contains a biotinylated protein, consistent with the assertion that ACC1 is localized there. The second ACC in T. gondii appears to be cytosolic. T. gondii mitochondria also contain a biotinylated protein, probably pyruvate carboxylase. These results confirm the essential nature of the apicoplast and explain the inhibition of parasite growth in cultured cells by herbicides targeting ACC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

cDNA fragments encoding the carboxyltransferase domain of the multidomain plastid acetyl-CoA carboxylase (ACCase) from herbicide-resistant maize and from herbicide-sensitive and herbicide-resistant Lolium rigidum were cloned and sequenced. A Leu residue was found in ACCases from herbicide-resistant plants at a position occupied by Ile in all ACCases from sensitive grasses studied so far. Leu is present at the equivalent position in herbicide-resistant ACCases from other eukaryotes. Chimeric ACCases containing a 1000-aa fragment of two ACCase isozymes found in a herbicide-resistant maize were expressed in a yeast ACC1 null mutant to test herbicide sensitivity of the enzyme in vivo and in vitro. One of the enzymes was resistant/tolerant, and one was sensitive to haloxyfop and sethoxydim, rendering the gene-replacement yeast strains resistant and sensitive to these compounds, respectively. The sensitive enzyme has an Ile residue, and the resistant one has a Leu residue at the putative herbicide-binding site. Additionally, a single Ile to Leu replacement at an equivalent position changes the wheat plastid ACCase from sensitive to resistant. The effect of the opposite substitution, Leu to Ile, makes Toxoplasma gondii apicoplast ACCase resistant to haloxyfop and clodinafop. In this case, inhibition of the carboxyltransferase activity of ACCase (second half-reaction) of a large fragment of the Toxoplasma enzyme expressed in Escherichia coli was tested. The critical amino acid residue is located close to a highly conserved motif of the carboxyltransferase domain, which is probably a part of the enzyme active site, providing the basis for the activity of fop and dim herbicides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acetyl-CoA carboxylase, which has a molecular mass of 265 kDa (ACC-alpha), catalyzes the rate-limiting step in the biosynthesis of long-chain fatty acids. In this study we report the complete amino acid sequence and unique features of an isoform of ACC with a molecular mass of 275 kDa (ACC-beta), which is primarily expressed in heart and skeletal muscles. In these tissues, ACC-beta may be involved in the regulation of fatty acid oxidation, rather than fatty acid biosynthesis. ACC-beta contains an amino acid sequence at the N terminus which is about 200 amino acids long and may be uniquely related to the role of ACC-beta in controlling carnitine palmitoyltransferase I activity and fatty acid oxidation by mitochondria. If we exclude this unique sequence at the N terminus the two forms of ACC show about 75% amino acid identity. All of the known functional domains of ACC are found in the homologous regions. Human ACC-beta cDNA has an open reading frame of 7,343 bases, encoding a protein of 2,458 amino acids, with a calculated molecular mass of 276,638 Da. The mRNA size of human ACC-beta is approximately 10 kb and is primarily expressed in heart and skeletal muscle tissues, whereas ACC-alpha mRNA is detected in all tissues tested. A fragment of ACC-beta cDNA was expressed in Escherichia coli and antibodies against the peptide were generated to establish that the cDNA sequence that we cloned is that for ACC-beta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An entire gene encoding wheat (var. Hard Red Winter Tam 107) acetyl-CoA carboxylase [ACCase; acetyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1.2] has been cloned and sequenced. Comparison of the 12-kb genomic sequence with the 7.4-kb cDNA sequence reported previously revealed 29 introns. Within the coding region, the exon sequence is 98% identical to the known wheat cDNA sequence. A second ACCase gene was identified by sequencing fragments of genomic clones that include the first two exons and the first intron. Additional transcripts were detected by 5' and 3' RACE analysis (rapid amplification of cDNA ends). One set of transcripts had a 5' end sequence identical to the cDNA found previously and another set was identical to the gene reported here. The 3' RACE clones fall into four distinguishable sequence sets, bringing the number of ACCase sequences to six. None of these cDNA or genomic clones encodes a chloroplast targeting signal. Identification of six different sequences suggests that either the cytosolic ACCase genes are duplicated in the three chromosome sets in hexaploid wheat or that each of the six alleles of the cytosolic ACCase gene has a readily distinguishable DNA sequence.