1000 resultados para Acc rate plankt for
Resumo:
Planktonic foraminiferal assemblages from the upper Pleistocene part of Hole 1087A (0 to 12.1 meters below seafloor) are investigated to assess the role of global and local climate changes on surface circulation in the southern Benguela region. The benthic stable isotope record indicates that the studied interval is representative of the last four climatic cycles, that is, down to marine isotope Stage (MIS) 12. The species assemblages bear a clear transitional to subpolar character, with Neogloboquadrina pachyderma (d), Globorotalia inflata, and Globigerina bulloides, in order of decreasing abundance, as the dominant taxa. This species association presently characterizes the mixing domain of old upwelled and open ocean waters, seaward of the Benguela upwelling cells. Abundance variation of the dominant foraminiferal species roughly follows a glacial-interglacial pattern down to MIS 8, suggesting an alternation of upwelling strength and associated seaward extension of the belt of upwelled water as a response to global climate changes. This pattern is interrupted from ~250 ka down to MIS 12, where the phase relationship with global climate is ill defined and might be interpreted as a local response of the southern Benguela region to the mid-Brunhes event. Of particular interest is a single pulse of newly upwelled waters at the location of Site 1087 during early MIS 9 as indicated by a peak abundance of sinistral N. pachyderma (s). Variable input of warm, salty Indian Ocean thermocline waters into the southeast Atlantic, a key component of the Atlantic heat conveyor, is indicated by abundance changes of the tropical taxon Globorotalia menardii. From this tracer, we suggest that interocean exchange was hardly interrupted throughout the last 460 k.y., but was most effective at glacial terminations, particularly during Terminations I and II, as well as during the upper part of MIS 12. This maximum input of Indian Ocean waters around the southern tip of Africa is associated with the reseeding of G. menardii in the tropical Atlantic.
Resumo:
The observation by Heinrich (1988) that, during the last glacial period, much of the input of ice-rafted detritus to the North Atlantic sediments may have occurred as a succession of catastrophic events, rekindled interest on the history of the northern ice sheets over the last glacial period. In this paper, we present a rapid method to study the distribution of these events (both in space and time) using whole core low-field magnetic susceptibility. We report on approximately 20 cores covering the last 150 to 250 kyr. Well-defined patterns of ice-rafted detritus appear during periods of large continental ice-sheet extent, although these are not always associated within their maxima. Most of the events may be traced across the North Atlantic Ocean. For the six most recent Heinrich layers (HL), two distinct patterns exist: HL1, HL2, HL4, HL5 are distributed along the northern boundary of the Glacial Polar Front, over most of the North Atlantic between ~40° and 50°N; HL3 is more restricted to the central and eastern part of the northern Atlantic. The Nd-Sr isotopic composition of the material constituting different Heinrich events indicates the different provenance of the two patterns: HL3 has a typical Scandinavia-Arctic-Icelandic 'young crust' signature, and the others have a large component of northern Quebec and northern West Greenland 'old crust' material. These isotopic results, obtained on core SU-9008 from the North American basin, are in agreement with the study by Jantschik and Huon (1992), who used K-Ar dating of silt- and clay-size fractions of an eastern basin core (ME-68-89). These data confirm the large spatial scale of these events, and the enormous amount of ice-rafted detritus they represent.
Resumo:
Since the 1970s, Ocean Drilling Program (ODP) and Deep Sea Drilling Program (DSDP) studies have documented high accumulations of biogenic silica and carbonate in the late Miocene-early Pliocene Indian-Pacific Ocean. This high biogenic productivity event, or the "Biogenic Bloom Event," has been dated from 9.0 to 3.5 Ma (Leinen, 1979, doi:10.1130/0016-7606(1979)90<801:BSAITC>2.0.CO;2; Theyer et al., 1985, doi:10.2973/dsdp.proc.85.133.1985; Farrell et al., 1995, doi:10.2973/odp.proc.sr.138.143.1995; Dickens and Owen, 1996, doi:10.1016/0377-8398(95)00054-2, 1999, doi:10.1016/S0025-3227(99)00057-2; Dickens and Barron, 1997, doi:10.1016/S0377-8398(97)00003-0; Berger et al., 1993, doi:10.2973/odp.proc.sr.130.051.1993). It is unknown, however, whether the Biogenic Bloom Event existed in the South China Sea (SCS). High-quality Cenozoic sediment cores taken from the SCS during ODP Leg 184 provide an opportunity to investigate this question. The purpose of this study is to trace and illustrate the change in biogenic productivity in the southern SCS since the late Miocene and the Biogenic Bloom Event in terms of the content and accumulation rate of opal and carbonate at Site 1143.
Resumo:
In the late Pliocene-middle Pleistocene a group of 95 species of elongate, cylindrical, deep-sea (lower bathyal-abyssal) benthic foraminifera became extinct. This Extinction Group (Ext. Gp), belonging to three families (all the Stilostomellidae and Pleurostomellidae, some of the Nodosariidae), was a major component (20-70%) of deep-sea foraminiferal assemblages in the middle Cenozoic and subsequently declined in abundance and species richness before finally disappearing almost completely during the mid-Pleistocene Climatic Transition (MPT). So what caused these declines and extinction? In this study 127 Ext. Gp species are identified from eight Cenozoic bathyal and abyssal sequences in the North Atlantic and equatorial Pacific Oceans. Most species are long-ranging with 80% originating in the Eocene or earlier. The greatest abundance and diversity of the Ext. Gp was in the warm oceanic conditions of the middle Eocene-early Oligocene. The group was subjected to significant changes in the composition of the faunal dominants and slightly enhanced species turnover during and soon after the rapid Eocene-Oligocene cooling event. Declines in the relative abundance and flux of the Ext. Gp, together with enhanced species loss, occurred during middle-late Miocene cooling, particularly at abyssal sites. The overall number of Ext. Gp species present began declining earlier at mid abyssal depths (in middle Miocene) than at upper abyssal (in late Pliocene-early Pleistocene) and then lower bathyal depths (in MPT). By far the most significant Ext. Gp declines in abundance and species loss occurred during the more severe glacial stages of the late Pliocene-middle Pleistocene. Clearly, the decline and extinction of this group of deep-sea foraminifera was related to the function of their specialized apertures and the stepwise cooling of global climate and deep water. We infer that the apertural modifications may be related to the method of food collection or processing, and that the extinctions may have resulted from the decline or loss of their specific phytoplankton or prokaryote food source, that was more directly impacted than the foraminifera by the cooling temperatures.
Resumo:
The Middle Eocene Climatic Optimum (MECO; ~ 40 million years ago [Ma]) is one of the most prominent transient global warming events in the Paleogene. Although the event is well documented in geochemical and isotopic proxy records at many locations, the marine biotic response to the MECO remains poorly constrained. We present new high-resolution, quantitative records of siliceous microplankton assemblages from the MECO interval of Ocean Drilling Program (ODP) Site 1051 in the subtropical western North Atlantic Ocean, which are interpreted in the context of published foraminiferal and bulk carbonate stable isotope (d18O and d13C) records. High diatom, radiolarian and silicoflagellate accumulation rates between 40.5 and 40.0 Ma are interpreted to reflect an ~ 500 thousand year (kyr) interval of increased nutrient supply and resultant surface-water eutrophication that was associated with elevated sea-surface temperatures during the prolonged onset of the MECO. Relatively low pelagic siliceous phytoplankton sedimentation accompanied the peak MECO warming interval and the termination of the MECO during an ~ 70 kyr interval centered at ~ 40.0 Ma. Following the termination of the MECO, an ~ 200-kyr episode of increased siliceous plankton abundance indicates enhanced nutrient levels between ~ 39.9 and 39.7 Ma. Throughout the Site 1051 record, abundance and accumulation rate fluctuations in neritic diatom taxa are similar to the trends observed in pelagic taxa, implying either similar controls on diatom production in the neritic and pelagic zones of the western North Atlantic or fluctuations in sea level and/or shelf accommodation on the North American continental margin to the west of Site 1051. These results, combined with published records based on multiple proxies, indicate a geographically diverse pattern of surface ocean primary production changes across the MECO. Notably, however, increased biosiliceous accumulation is recorded at both ODP Sites 1051 and 748 (Southern Ocean) in response to MECO warming. This may suggest that increased biosiliceous sediment accumulation, if indeed a widespread phenomenon, resulted from higher continental silicate weathering rates and an increase in silicic acid supply to the oceans over several 100 kyr during the MECO.
Resumo:
The terrigenous mineral fraction of sediments recovered by drilling during Ocean Drilling Program Leg 167 at Sites 1018 and 1020 is used to evaluate changes in the source and transport of fine-grained terrigenous sediment and its relation to regional climates and the paleoceanographic evolution of the California Current system during the late Pleistocene. Preliminary time scales developed by correlation of oxygen isotope stratigraphies with the global SPECMAP record show average linear sedimentation rates in excess of 100 m/m.y., which provide an opportunity for high-resolution studies of terrigenous flux, grain size, and mineralogy. The mass flux of terrigenous minerals at Site 1018 varies from 5 to 30 g/(cm**2 x k.y.) and displays a general trend toward increased flux during glacials. The terrigenous record at Site 1020 shows a similar pattern of increased glacial input, but overall accumulation rates are significantly lower. Spectral analysis demonstrates that most of this variability is concentrated in frequency bands related to orbital cycles of eccentricity, tilt, and precession. Detailed grain-size analysis performed on the isolated terrigenous mineral fraction shows that sediments from Site 1018 are associated with higher energy transport and depositional regimes than those found at Site 1020. Grain-size data are remarkably uniform throughout the last 500 k.y., with no discernible difference observed between glacial and interglacial size distributions within each site. X-ray diffraction analysis of the <2-µm clay component suggests that the deposition of minerals found at Site 1020 is consistent with transport from a southern source during intervals of increased terrigenous input.
Resumo:
During the late Pliocene-middle Pleistocene, 63 species of elongate, bathyal-upper abyssal benthic foraminifera (Extinction Group = Stilostomellidae, Pleurostomellidae, some Nodosariidae) declined in abundance and finally disappeared in the northern Indian Ocean (ODP Sites 722, 758), as part of the global extinction of at least 88 related species at this time. The detailed record of withdrawal of these species differs by depth and geography in the Indian Ocean. In northwest Indian Ocean Site 722 (2045 m), the Extinction Group of 54 species comprised 2-15% of the benthic foraminiferal fauna in the earliest Pleistocene, but declined dramatically during the onset of the mid-Pleistocene Transition (MPT) at 1.2-1.1 Ma, with all but three species disappearing by the end of the MPT (~0.6 Ma). In northeast Indian Ocean Site 758 (2925 m), the Extinction Group of 44 species comprised 1-5% of the benthic foraminiferal fauna at ~3.3-2.6 Ma, but declined in abundance and diversity in three steps, at ~2.5, 1.7, and 1.2 Ma, with all but one species disappearing by the end of the MPT. At both sites there are strong positive correlations between the accumulation rate of the Extinction Group and proxies indicating low-oxygen conditions with a high organic carbon input. In both sites, there was a pulsed decline in Extinction Group abundance and species richness, especially in glacial periods, with some partial recoveries in interglacials. We infer that the glacial declines at the deeper Site 758 were a result of increased production of colder, well-ventilated Antarctic Bottom Water (AABW), particularly in the late Pliocene and during the MPT. The Extinction Group at shallower water depths (Site 722) were not impacted by the deeper water mass changes until the onset of the MPT, when cold, well-ventilated Glacial North Atlantic Intermediate Water (GNAIW) production increased and may have spread into the Indian Ocean. Increased chemical ventilation at various water depths since late Pliocene, particularly in glacial periods, possibly in association with decreased or more fluctuating organic carbon flux, might be responsible for the pulsed global decline and extinction of this rather specialised group of benthic foraminifera.
Resumo:
Benthic foraminiferal assemblage compositions and sedimentary geochemical parameters were analyzed in two radiocarbon dated sediment cores from the upwelling area off NW Africa at 12°N, to reconstruct productivity changes during the last 31 kyr. High-latitude cold events and variations in low-latitude summer insolation influenced humidity, wind systems, and the position of the tropical rain belt over this time period. This in turn caused changes in intensity and seasonality of primary productivity off the southern Northwest African continental margin. High accumulation rates of benthic foraminifera, carbonate, and organic carbon during times of north Atlantic melt water events Heinrich 2 (25.4 to 24.3 kyr BP) and 1 (16.8 to 15.8 kyr BP) indicate high productivity. Dominance of infaunal benthic foraminiferal species and high numbers of deep infaunal specimens during that time indicate a strong and sustained supply of refractory organic matter reworked from the upper slope and shelf. A more southerly position of the tropical rainbelt and the Northeast trade wind belt during Heinrich 2 and 1 may have enhanced wind intensity and almost permanent upwelling, driving this scenario. A phytodetritus-related benthic fauna indicates seasonally pulsed input of labile organic matter but generally low year-round productivity during the Last Glacial Maximum (23 to 18 kyr BP). The tropical rainbelt is more expanded to the North than during Heinrich Events, and relatively weak NE trade winds resulted in seasonal and weak upwelling, thus lower productivity. High productivity characterized by a seasonally high input of labile organic matter, is indicated for times of orbital forced warming, such as the African Humid Period (9.8 to 7 kyr BP). An intensified African monsoon during boreal summer and the northernmost position of the tropical rainbelt within the last 31 kyr resulted in enhanced river discharge from the northward-extended drainage area (or river basin) initiating intense phytoplankton blooms. In the late Holocene (4 to 0 kyr BP) strong carbonate dissolution may have been caused by even more enhanced organic matter fluxes to the sea floor. Increasing aridity on the continent and stronger NE trade winds induced intensive, seasonal coastal upwelling.
Resumo:
Instrumental monitoring of the climate at high northern latitudes has documented the ongoing warming of the last few decades. Climate modelling has also demonstrated that the global warming signal will be amplified in the polar region. Such temperature increases would have important implications on the ecosystem and biota of the Barents Sea. This study therefore aims to reconstruct the climatic changes of the Barents Sea based on benthic foraminifera over approximately the last 1400 years at the decadal to sub-decadal scale. Oxygen and carbon isotope analysis and benthic foraminiferal species counts indicate an overall warming trend of approximately 2.6°C through the 1400-year record. In addition, the well-documented cooling period equating to the 'Little Ice Age' is evident between c. 1650 and 1850. Most notably, a series of highly fluctuating temperatures are observed over the last century. An increase of 1.5°C is shown across this period. Thus for the first time we are able to demonstrate that the recent Arctic warming is also reflected in the oceanic micro-fauna.
Resumo:
In the collective monograph results of geological and geophysical studies in the Tadjura Rift carried out by conventional outboard instruments and from deep/sea manned submersibles "Pisces" in winter 1983-1984 are reported. Main features of rift tectonics, geology, petrology, and geochemistry of basalts from the rift are under consideration. An emphasis is made on lithology, stratigraphy, and geochemistry of bottom sediments. Roles of terrigenous, edafogenic, biogenic, and hydrothermal components in formation of bottom sediments from the rift zone are shown.
Resumo:
During the middle Miocene, Earth's climate transitioned from a relatively warm phase (Miocene climatic optimum) into a colder mode with re-establishment of permanent ice sheets on Antarctica, thus marking a fundamental step in Cenozoic cooling. Carbon sequestration and atmospheric CO2 drawdown through increased terrestrial and/or marine productivity have been proposed as the main drivers of this fundamental transition. We integrate high-resolution (1-3 k.y.) benthic stable isotope data with XRF-scanner derived biogenic silica and carbonate accumulation estimates in an exceptionally well-preserved sedimentary archive, recovered at Integrated Ocean Drilling Program Site U1338, to reconstruct eastern equatorial Pacific productivity variations and to investigate temporal linkages between high- and low-latitude climate change over the interval 16-13 Ma. Our records show that the climatic optimum (16.8-14.7 Ma) was characterized by high amplitude climate variations, marked by intense perturbations of the carbon cycle. Episodes of peak warmth at (southern hemisphere) insolation maxima coincided with transient shoaling of the carbonate compensation depth and enhanced carbonate dissolution in the deep ocean. A switch to obliquity-paced climate variability after 14.7 Ma concurred with a general improvement in carbonate preservation and the onset of stepwise global cooling, culminating with extensive ice growth over Antarctica at ~13.8 Ma. We find that two massive increases in opal accumulation at ~14.0 and ~13.8 Ma occurred just before and during the final and most prominent cooling step, supporting the hypothesis that enhanced siliceous productivity in the eastern equatorial Pacific contributed to CO2 drawdown.
Resumo:
The modern Indian Ocean summer monsoon is driven by differential heating between the Asian continent and the Indian Ocean to the south. This differential heating produces a strong pressure gradient which drives southwest monsoon winds during June, July, and August. Satellite and meteorological observations, aerosol measurements, sediment trap studies, and mineralogical studies indicate an atmospheric mode of transport for modern lithogenic sediments in the northwest Arabian Sea. Analyses of lithogenic grain size and mass accumulation rate (MAR) records from the Owen Ridge indicate that eolian transport has been the primary mode of transport for the past 370 kyr. Visual inspection shows that the MAR record is positively correlated with global ice volume as indicated by the marine delta18O record. In contrast, the grain-size record varies at a much higher frequency, showing little correlation to either the MAR or the delta18O records. Spectral analyses confirm these relationships, indicating that the lithogenic grain-size and MAR records are coherent only over the precession band whereby the grain size leads the MAR by 124° (~8 kyr). We conclude that an eolian transport mechanism is the only mechanism that allows for this phase difference and at the same time is supported by comparison of the grain size and MAR with independent eolian records. We use lithogenic grain size as a paleoclimatic indicator of summer monsoon wind strength and lithogenic MAR as a paleoclimatic indicator of source-area aridity. These interpretations are supported by comparison of the lithogenic records to independent indicators of wind strength (Globigerina bulloides upwelling record) and aridity (a loess record from central China). Such comparisons indicate high coherence and zero phase relationships. Our work supports the findings of previous studies which have documented the link between monsoon strength and the Earth's axial precession cycles. Both the lithogenic MAR and the grain-size records have high coherency with precessional insolation. Maximum lithogenic MAR (source-area aridity) is in phase with delta18O (global ice volume) and leads maximum precessional insolation by 88° (~6 kyr). We attribute this lead to the influence of glacial conditions on the aridity, and therefore the deflation potential, of the source areas. Maximum lithogenic grain size (summer monsoon wind strength) lags maximum precession by 148° (~9 kyr). We attribute this lag both to the influence of global and/or local ice volume and to the availability of latent heat from the southern hemisphere Indian Ocean, the two of which combine to determine the strength of the Indian Ocean monsoon.
Resumo:
Constraining the nature of Antarctic Ice Sheet (AIS) response to major past climate changes may provide a window onto future ice response and rates of sea level rise. One approach to tracking AIS dynamics, and differentiating whole system versus potentially heterogeneous ice sheet sector changes, is to integrate multiple climate proxies for a specific time slice across widely distributed locations. This study presents new iceberg-rafted debris (IRD) data across the interval that includes Marine Isotope Stage 31 (MIS 31: 1.081-1.062 Ma, a span of ~19 kyr; Lisiecki and Raymo, 2005), which lies on the cusp of the mid-Brunhes climate transition (as glacial cycles shifted from ~41,000 yr to ~100,000 yr duration). Two sites are studied - distal Ocean Drilling Program (ODP) Leg 177 Site 1090 (Site 1090) in the eastern subantarctic sector of the South Atlantic Ocean, and proximal ODP Leg 188 Site 1165 (Site 1165), near Prydz Bay, in the Indian Ocean sector of the Antarctic margin. At each of these sites, MIS 31 is marked by the presence of the Jaramillo Subchron (0.988-1.072 Ma; Lourens et al., 2004) which provides a time-marker to correlate these two sites with relative precision. At both sites, records of multiple climate proxies are available to aid in interpretation. The presence of IRD in sediments from our study areas, which include garnets indicating a likely East Antarctic Ice Sheet (EAIS) origin, supports the conclusion that although the EAIS apparently withdrew significantly over MIS 31 in the Prydz Bay region and other sectors, some sectors of the EAIS must still have maintained marine margins capable of launching icebergs even through the warmest intervals. Thus, the EAIS did not respond in complete synchrony even to major climate changes such as MIS 31. Further, the record at Site 1090 (supported by records from other subantarctic locations) indicates that the glacial MIS 32 should be reduced to no more than a stadial, and the warm interval of Antarctic ice retreat that includes MIS 31 should be expanded to MIS 33-31. This revised warm interval lasted about 52 kyr, in line with several other interglacials in the benthic d18O records stack of Lisiecki and Raymo (2005), including the super-interglacials MIS 11 (duration of 50 kyr) and MIS 5 (duration of 59 kyr). The record from Antarctica-proximal Site 1165, when interpreted in accord with the record from ANDRILL-1B, indicates that in these southern high latitude sectors, ice sheet retreat and the effects of warming lasted longer than at Site 1090, perhaps until MIS 27. In the current interpretations of the age models of the proximal sites, ice sheet retreat began relatively slowly, and was not really evident until the start of MIS 31. In another somewhat more speculative interpretation, ice sheet retreat began noticeably with MIS 33, and accelerated during MIS 31. Ice sheet inertia (the lag-times in the large-scale responses of major ice sheets to a forcing) likely plays an important part in the timing and scale of these events in vulnerable sectors of the AIS.
Resumo:
We present for the first time all 12 d18O records obtained from ice cores drilled in the framework of the North Greenland Traverse (NGT) between 1993 and 1995 in northern Greenland. The cores cover an area of 680 km × 317 km, 10 % of the Greenland ice sheet. Depending on core length (100-175 m) and accumulation rate (90-200 kg/m**2/a) the single records reflect an isotope-temperature history over the last 500-1100 years. Lowest d18O mean values occur north of the summit and east of the main divide as a consequence of Greenland's topography. In general, ice cores drilled on the main ice divide show different results than those drilled east of the main ice divide that might be influenced by secondary regional moisture sources. A stack of all NGT records and the NGRIP record is presented with improved signal-to-noise ratio. Compared to single records, this stack represents the mean d18O signal for northern Greenland that is interpreted as proxy for temperature. Our northern Greenland d18O stack indicates distinctly enriched d18O values during medieval times, about AD 1420 ± 20 and from AD 1870 onwards. The period between AD 1420 and AD 1850 has depleted d18O values compared to the average for the entire millennium and represents the Little Ice Age. The d18O values of the 20th century are comparable to the medieval period but are lower than that about AD 1420.
Resumo:
We analyzed foraminiferal and nannofossil assemblages and stable isotopes in samples from ODP Hole 807A on the Ontong Java Plateau in order to evaluate productivity and carbonate dissolution cycles over the last 550 kyr (kilo year) in the western equatorial Pacific. Our results indicate that productivity was generally higher in glacials than during interglacials, and gradually increased since MIS 13. Carbonate dissolution was weak in deglacial intervals, but often reached a maximum during interglacial to glacial transitions. Carbonate cycles in the western equatorial Pacific were mainly influenced by changes of deep-water properties rather than by local primary productivity. Fluctuations of the estimated thermocline depth were not related to glacial to interglacial alternations, but changed distinctly at ~280 kyr. Before that time the thermocline was relatively shallow and its depth fluctuated at a comparatively high amplitude and low frequency. After 280 kyr, the thermocline was deeper, and its fluctuations were at lower amplitude and higher frequency. These different patterns in productivity and thermocline variability suggest that thermocline dynamics probably were not a controlling factor of biological productivity in the western equatorial Pacific Ocean. In this region, upwelling, the influx of cool, nutrient-rich waters from the eastern equatorial Pacific or of fresh waters from rivers have probably never been important, and their influence on productivity has been negligible over the studied period. Variations in the inferred productivity in general are well correlated with fluctuations in the eolian flux as recorded in the northwestern Pacific, a proxy for the late Quaternary history of the central East Asian dust flux into the Pacific. Therefore, we suggest that the dust flux from the central East Asian continent may have been an important driver of productivity in the western Pacific.