991 resultados para Acc rate <2 µm
Resumo:
The Middle Eocene Climatic Optimum (MECO; ~ 40 million years ago [Ma]) is one of the most prominent transient global warming events in the Paleogene. Although the event is well documented in geochemical and isotopic proxy records at many locations, the marine biotic response to the MECO remains poorly constrained. We present new high-resolution, quantitative records of siliceous microplankton assemblages from the MECO interval of Ocean Drilling Program (ODP) Site 1051 in the subtropical western North Atlantic Ocean, which are interpreted in the context of published foraminiferal and bulk carbonate stable isotope (d18O and d13C) records. High diatom, radiolarian and silicoflagellate accumulation rates between 40.5 and 40.0 Ma are interpreted to reflect an ~ 500 thousand year (kyr) interval of increased nutrient supply and resultant surface-water eutrophication that was associated with elevated sea-surface temperatures during the prolonged onset of the MECO. Relatively low pelagic siliceous phytoplankton sedimentation accompanied the peak MECO warming interval and the termination of the MECO during an ~ 70 kyr interval centered at ~ 40.0 Ma. Following the termination of the MECO, an ~ 200-kyr episode of increased siliceous plankton abundance indicates enhanced nutrient levels between ~ 39.9 and 39.7 Ma. Throughout the Site 1051 record, abundance and accumulation rate fluctuations in neritic diatom taxa are similar to the trends observed in pelagic taxa, implying either similar controls on diatom production in the neritic and pelagic zones of the western North Atlantic or fluctuations in sea level and/or shelf accommodation on the North American continental margin to the west of Site 1051. These results, combined with published records based on multiple proxies, indicate a geographically diverse pattern of surface ocean primary production changes across the MECO. Notably, however, increased biosiliceous accumulation is recorded at both ODP Sites 1051 and 748 (Southern Ocean) in response to MECO warming. This may suggest that increased biosiliceous sediment accumulation, if indeed a widespread phenomenon, resulted from higher continental silicate weathering rates and an increase in silicic acid supply to the oceans over several 100 kyr during the MECO.
Resumo:
The terrigenous mineral fraction of sediments recovered by drilling during Ocean Drilling Program Leg 167 at Sites 1018 and 1020 is used to evaluate changes in the source and transport of fine-grained terrigenous sediment and its relation to regional climates and the paleoceanographic evolution of the California Current system during the late Pleistocene. Preliminary time scales developed by correlation of oxygen isotope stratigraphies with the global SPECMAP record show average linear sedimentation rates in excess of 100 m/m.y., which provide an opportunity for high-resolution studies of terrigenous flux, grain size, and mineralogy. The mass flux of terrigenous minerals at Site 1018 varies from 5 to 30 g/(cm**2 x k.y.) and displays a general trend toward increased flux during glacials. The terrigenous record at Site 1020 shows a similar pattern of increased glacial input, but overall accumulation rates are significantly lower. Spectral analysis demonstrates that most of this variability is concentrated in frequency bands related to orbital cycles of eccentricity, tilt, and precession. Detailed grain-size analysis performed on the isolated terrigenous mineral fraction shows that sediments from Site 1018 are associated with higher energy transport and depositional regimes than those found at Site 1020. Grain-size data are remarkably uniform throughout the last 500 k.y., with no discernible difference observed between glacial and interglacial size distributions within each site. X-ray diffraction analysis of the <2-µm clay component suggests that the deposition of minerals found at Site 1020 is consistent with transport from a southern source during intervals of increased terrigenous input.
Resumo:
Instrumental monitoring of the climate at high northern latitudes has documented the ongoing warming of the last few decades. Climate modelling has also demonstrated that the global warming signal will be amplified in the polar region. Such temperature increases would have important implications on the ecosystem and biota of the Barents Sea. This study therefore aims to reconstruct the climatic changes of the Barents Sea based on benthic foraminifera over approximately the last 1400 years at the decadal to sub-decadal scale. Oxygen and carbon isotope analysis and benthic foraminiferal species counts indicate an overall warming trend of approximately 2.6°C through the 1400-year record. In addition, the well-documented cooling period equating to the 'Little Ice Age' is evident between c. 1650 and 1850. Most notably, a series of highly fluctuating temperatures are observed over the last century. An increase of 1.5°C is shown across this period. Thus for the first time we are able to demonstrate that the recent Arctic warming is also reflected in the oceanic micro-fauna.
Resumo:
During the middle Miocene, Earth's climate transitioned from a relatively warm phase (Miocene climatic optimum) into a colder mode with re-establishment of permanent ice sheets on Antarctica, thus marking a fundamental step in Cenozoic cooling. Carbon sequestration and atmospheric CO2 drawdown through increased terrestrial and/or marine productivity have been proposed as the main drivers of this fundamental transition. We integrate high-resolution (1-3 k.y.) benthic stable isotope data with XRF-scanner derived biogenic silica and carbonate accumulation estimates in an exceptionally well-preserved sedimentary archive, recovered at Integrated Ocean Drilling Program Site U1338, to reconstruct eastern equatorial Pacific productivity variations and to investigate temporal linkages between high- and low-latitude climate change over the interval 16-13 Ma. Our records show that the climatic optimum (16.8-14.7 Ma) was characterized by high amplitude climate variations, marked by intense perturbations of the carbon cycle. Episodes of peak warmth at (southern hemisphere) insolation maxima coincided with transient shoaling of the carbonate compensation depth and enhanced carbonate dissolution in the deep ocean. A switch to obliquity-paced climate variability after 14.7 Ma concurred with a general improvement in carbonate preservation and the onset of stepwise global cooling, culminating with extensive ice growth over Antarctica at ~13.8 Ma. We find that two massive increases in opal accumulation at ~14.0 and ~13.8 Ma occurred just before and during the final and most prominent cooling step, supporting the hypothesis that enhanced siliceous productivity in the eastern equatorial Pacific contributed to CO2 drawdown.
Resumo:
NW African climate shows orbital and millenial-scale variations, which are tightly connected to changes in marine productivity. We present an organic-walled dinoflagellate cyst (dinocyst) record from a sediment core off Cape Yubi at about 27°N in the Canary Basin covering the time period from 47 to 3ka before present (BP). The dinocyst record reflects differences in upwelling intensity and seasonality as well as the influence of fluvial input. Sea-level changes play an important role for the upwelling pattern and productivity signals at the core site. Within the studied time interval, four main phases were distinguished. (1) From 45 to 24ka BP, when sea-level was mostly about 75m lower than today, high relative abundances of cysts of heterotrophic taxa point to enhanced upwelling activity, especially during Heinrich Events, while relatively low dinocyst accumulation rates indicate that filament activity at the core location was strongly reduced. (2) At sea-level lowstand during the LGM to H1, dinocyst accumulation rates suggest that local filament formation was even more inhibited. (3) From the early Holocene to about 8ka BP, extraordinary high accumulation rates of most dinocyst species, especially of Lingulodinium machaerophorum, suggest that nutrient supply via fluvial input increased and rising sea-level promoted filament formation. At the same time, the upwelling season prolongated. (4) A relative increase in cysts of photoautotrophic taxa from about 8ka BP on indicates more stratified conditions while fluvial input decreased. Our study shows that productivity records can be very sensitive to regional features. From the dinocyst data we infer that marine surface productivity off Cape Yubi during glacial times was within the scale of modern times but extremely enhanced during deglaciation.
Resumo:
Present day oceans are well ventilated, with the exception of mid-depth oxygen minimum zones (OMZs) under high surface water productivity, regions of sluggish circulation, and restricted marginal basins. In the Mesozoic, however, entire oceanic basins transiently became dysoxic or anoxic. The Cretaceous ocean anoxic events (OAEs) were characterised by laminated organic-carbon rich shales and low-oxygen indicating trace fossils preserved in the sedimentary record. Yet assessments of the intensity and extent of Cretaceous near-bottom water oxygenation have been hampered by deep or long-term diagenesis and the evolution of marine biota serving as oxygen indicators in today's ocean. Sedimentary features similar to those found in Cretaceous strata were observed in deposits underlying Recent OMZs, where bottom-water oxygen levels, the flux of organic matter, and benthic life have been studied thoroughly. Their implications for constraining past bottom-water oxygenation are addressed in this review. We compared OMZ sediments from the Peruvian upwelling with deposits of the late Cenomanian OAE 2 from the north-west African shelf. Holocene laminated sediments are encountered at bottom-water oxygen levels of < 7 µmol/kg under the Peruvian upwelling and < 5 µmol/kg in California Borderland basins and the Pakistan Margin. Seasonal to decadal changes of sediment input are necessary to create laminae of different composition. However, bottom currents may shape similar textures that are difficult to discern from primary seasonal laminae. The millimetre-sized trace fossil Chondrites was commonly found in Cretaceous strata and Recent oxygen-depleted environments where its diameter increased with oxygen levels from 5 to 45 µmol/kg. Chondrites has not been reported in Peruvian sediments but centimetre-sized crab burrows appeared around 10 µmol/kg, which may indicate a minimum oxygen value for bioturbated Cretaceous strata. Organic carbon accumulation rates ranged from 0.7 and 2.8 g C /cm2 /kyr in laminated OAE 2 sections in Tarfaya Basin, Morocco, matching late Holocene accumulation rates of laminated Peruvian sediments under Recent oxygen levels below 5 µmol/kg. Sediments deposited at > 10 µmol/kg showed an inverse exponential relationship of bottom-water oxygen levels and organic carbon accumulation depicting enhanced bioirrigation and decomposition of organic matter with increased oxygen supply. In the absence of seasonal laminations and under conditions of low burial diagenesis, this relationship may facilitate quantitative estimates of palaeo-oxygenation. Similarities and differences between Cretaceous OAEs and late Quaternary OMZs have to be further explored to improve our understanding of sedimentary systems under hypoxic conditions.
Resumo:
We present for the first time all 12 d18O records obtained from ice cores drilled in the framework of the North Greenland Traverse (NGT) between 1993 and 1995 in northern Greenland. The cores cover an area of 680 km × 317 km, 10 % of the Greenland ice sheet. Depending on core length (100-175 m) and accumulation rate (90-200 kg/m**2/a) the single records reflect an isotope-temperature history over the last 500-1100 years. Lowest d18O mean values occur north of the summit and east of the main divide as a consequence of Greenland's topography. In general, ice cores drilled on the main ice divide show different results than those drilled east of the main ice divide that might be influenced by secondary regional moisture sources. A stack of all NGT records and the NGRIP record is presented with improved signal-to-noise ratio. Compared to single records, this stack represents the mean d18O signal for northern Greenland that is interpreted as proxy for temperature. Our northern Greenland d18O stack indicates distinctly enriched d18O values during medieval times, about AD 1420 ± 20 and from AD 1870 onwards. The period between AD 1420 and AD 1850 has depleted d18O values compared to the average for the entire millennium and represents the Little Ice Age. The d18O values of the 20th century are comparable to the medieval period but are lower than that about AD 1420.
Resumo:
Bulk sediment accumulation rates and carbonate and carbonate-free accumulation rates corrected for tectonic tilting have been calculated for Leg 78A sediments. These rates are uniformly low, ranging from 0.1 to 6.8 g/(cm**2 x 10**3 yr.), reflecting the pelagic-hemipelagic nature of all the sediments drilled in the northern Lesser Antilles forearc. Rates calculated for Sites 541 and 542 [0.6-6.8 g/(cm**2 x 10**3 yr.)], located on the lower slope of the accretionary prism, are significantly greater than the Neogene rates calculated for oceanic reference Site 543 [0.1-2.4 g/(cm**2 x 10**3)]. This difference could be the result of (1) tectonic thickening of accretionary prism sediments due to folding, small-scale faulting, and layer-parallel shortening; (2) deposition in shallower water farther above the CCD (carbonate compensation depth) resulting in preservation of a greater percentage of calcareous microfossils; or (3) a greater percentage of foraminiferal sediment gravity flows. Terrigenous turbidites are not documented in the Leg 78A area because of (1) great distance from South American sources; (2) damming effects of east-west trending tectonic elements; and (3) location on the Tiburon Rise (Site 543). This lack of terrigenous material, characteristic of intraoceanic convergent margins, suggests that published sedimentation models for active continental convergent margins with abundant terrigenous influxes are not applicable to intraoceanic convergent margin settings.
Resumo:
Global databases of calcium carbonate concentrations and mass accumulation rates in Holocene and last glacial maximum sediments were used to estimate the deep-sea sedimentary calcium carbonate burial rate during these two time intervals. Sparse calcite mass accumulation rate data were extrapolated across regions of varying calcium carbonate concentration using a gridded map of calcium carbonate concentrations and the assumption that accumulation of noncarbonate material is uncorrelated with calcite concentration within some geographical region. Mean noncarbonate accumulation rates were estimated within each of nine regions, determined by the distribution and nature of the accumulation rate data. For core-top sediments the regions of reasonable data coverage encompass 67% of the high-calcite (>75%) sediments globally, and within these regions we estimate an accumulation rate of 55.9 ± 3.6 x 10**11 mol/yr. The same regions cover 48% of glacial high-CaCO3 sediments (the smaller fraction is due to a shift of calcite deposition to the poorly sampled South Pacific) and total 44.1 ± 6.0 x 10**11 mol/yr. Projecting both estimates to 100 % coverage yields accumulation estimates of 8.3 x 10**12 mol/yr today and 9.2 x 10**12 mol/yr during glacial time. This is little better than a guess given the incomplete data coverage, but it suggests that glacial deep sea calcite burial rate was probably not considerably faster than today in spite of a presumed decrease in shallow water burial during glacial time.
Resumo:
Upwelling intensity in the South China Sea has changed over glacial-interglacial cycles in response to orbital-scale changes in the East Asian Monsoon. Here, we evaluate new multi-proxy records of two sediment cores from the north-eastern South China Sea to uncover millennial-scale changes in winter monsoondriven upwelling over glacial Terminations I and II. On the basis of U/Th-based speleothem chronology, we compare these changes with sediment records of summer monsoondriven upwelling east of South Vietnam. Ocean upwelling is traced by reduced (UK'37-based) temperature and increased nutrient and productivity estimates of sea surface water (d13C on planktic foraminifera, accumulation rates of alkenones, chlorins, and total organic carbon). Accordingly, strong winter upwelling occurred north-west of Luzon (Philippines) during late Marine Isotope Stage 6.2, Heinrich (HS) and Greenland stadials (GS) HS-11, GS-26, GS-25, HS-1, and the Younger Dryas. During these stadials, summer upwelling decreased off South Vietnam and sea surface salinity reached a maximum suggesting a drop in monsoon rains, concurrent with speleothem records of aridity in China. In harmony with a stadial-to-interstadial see-saw pattern, winter upwelling off Luzon in turn was weak during interstadials, in particular those of glacial Terminations I and II, when summer upwelling culminated east of South Vietnam. Most likely, this upwelling terminated widespread deep-water stratification, coeval with the deglacial rise in atmospheric CO2. Yet, a synchronous maximum in precipitation fostered estuarine overturning circulation in the South China Sea, in particular as long as the Borneo Strait was closed when sea level dropped below -40 m.
Resumo:
Using high-resolution 3D and 2D (axisymmetric) hydrodynamic simulations in spherical geometry, we study the evolution of cool cluster cores heated by feedback-driven bipolar active galactic nuclei (AGNs) jets. Condensation of cold gas, and the consequent enhanced accretion, is required for AGN feedback to balance radiative cooling with reasonable efficiencies, and to match the observed cool core properties. A feedback efficiency (mechanical luminosity approximate to epsilon(M) over dot(acc)c(2); where (M) over dot(acc). is the mass accretion rate at 1 kpc) as small as 6 x 10(-5) is sufficient to reduce the cooling/accretion rate by similar to 10 compared to a pure cooling flow in clusters (with M-200 less than or similar to 7 x 10(14) M-circle dot). This value is much smaller compared to the ones considered earlier, and is consistent with the jet efficiency and the fact that only a small fraction of gas at 1 kpc is accreted onto the supermassive black hole (SMBH). The feedback efficiency in earlier works was so high that the cluster core reached equilibrium in a hot state without much precipitation, unlike what is observed in cool-core clusters. We find hysteresis cycles in all our simulations with cold mode feedback: condensation of cold gas when the ratio of the cooling-time to the free-fall time (t(cool)/t(ff)) is less than or similar to 10 leads to a sudden enhancement in the accretion rate; a large accretion rate causes strong jets and overheating of the hot intracluster medium such that t(cool)/t(ff) > 10; further condensation of cold gas is suppressed and the accretion rate falls, leading to slow cooling of the core and condensation of cold gas, restarting the cycle. Therefore, there is a spread in core properties, such as the jet power, accretion rate, for the same value of core entropy t(cool)/t(ff). A smaller number of cycles is observed for higher efficiencies and for lower mass halos because the core is overheated to a longer cooling time. The 3D simulations show the formation of a few-kpc scale, rotationally supported, massive (similar to 10(11) M-circle dot) cold gas torus. Since the torus gas is not accreted onto the SMBH, it is largely decoupled from the feedback cycle. The radially dominant cold gas (T < 5 x 10(4) K; vertical bar v(r)vertical bar >vertical bar v(phi vertical bar)) consists of fast cold gas uplifted by AGN jets and freely infalling cold gas condensing out of the core. The radially dominant cold gas extends out to 25 kpc for the fiducial run (halo mass 7 x 10(14) M-circle dot and feedback efficiency 6 x 10(-5)), with the average mass inflow rate dominating the outflow rate by a factor of approximate to 2. We compare our simulation results with recent observations.
Resumo:
Effect of water depth on recovery rate, growth performance and fish yield of GIFT in the rice-fish production systems was studies in experimental plots of 123 m2 with a pond refuge of I meter deep which covered 10% of the total land area. Mortality rate of fish was very low ranging from 0.81-1.63%. However, at harvest, recovery rate ranged from 76.69-82.93% with the highest recovery at 11-15 em of water depth. Significantly the highest absolute growth (99.97) and specific growth rate (2.42%) were found at 21-25 cm water depth. The same treatment also produced significantly higher fish yield (909.76 kg/ha) although statistically similar to the fish yield (862.60 kg/ha) obtained at ll-15 em of water depth. Results also suggested that higher water depth can produce bigger fish but no significant effects of water depth was found on fish yield in the treatments 11-15 cm and 21-25 cm water depths of this experiment.
Resumo:
We have demonstrated stable self-starting passive mode-locking in a diode-end-pumped Nd: YVO4 laser using a semiconductor saturable absorber mirror (SESAM). An ln(0.25)Ga(0.75)As single quantum-well SESAM, which was grown by the metalorganic chemical-vapor deposition technique at low temperature, acts as a passive mode-locking device and an output coupler at the same time. Continuous-wave mode-locked transform-limited pulses were obtained at 1064 nm with a pulse duration of 2.1 ps and an average output power of 1.28 W at a repetition rate of 96.5 MHz. (c) 2005 American Institute of Physics.
Resumo:
Quality of Service (QoS) guarantees are required by an increasing number of applications to ensure a minimal level of fidelity in the delivery of application data units through the network. Application-level QoS does not necessarily follow from any transport-level QoS guarantees regarding the delivery of the individual cells (e.g. ATM cells) which comprise the application's data units. The distinction between application-level and transport-level QoS guarantees is due primarily to the fragmentation that occurs when transmitting large application data units (e.g. IP packets, or video frames) using much smaller network cells, whereby the partial delivery of a data unit is useless; and, bandwidth spent to partially transmit the data unit is wasted. The data units transmitted by an application may vary in size while being constant in rate, which results in a variable bit rate (VBR) data flow. That data flow requires QoS guarantees. Statistical multiplexing is inadequate, because no guarantees can be made and no firewall property exists between different data flows. In this paper, we present a novel resource management paradigm for the maintenance of application-level QoS for VBR flows. Our paradigm is based on Statistical Rate Monotonic Scheduling (SRMS), in which (1) each application generates its variable-size data units at a fixed rate, (2) the partial delivery of data units is of no value to the application, and (3) the QoS guarantee extended to the application is the probability that an arbitrary data unit will be successfully transmitted through the network to/from the application.
Resumo:
BACKGROUND: Ghrelin is a gastrointestinal peptide hormone (a 28-amino acid peptide) produced primarily by X/A cells in the oxyntic glands of the stomach fundus and cells lining the duodenum cavern. It suppresses insulin secretion and action and commands a significant role in regulating food intake. The aim of the present study was to show that modified laparoscopic sleeve gastrectomy (MLSG), in which a significant part of the gastric fundus and body of the stomach is removed up to 1 inch from the pylorus vein, may contribute to decreasing circulating ghrelin levels. METHODS: A study population consisting of 150 individuals was monitored after undergoing a MLSG, with individuals chosen based on a documented history of diabetes mellitus type 2 and metabolic syndrome, clinical results determining a body mass index (BMI) of 35 to 60 kg/m(2), peptide C level greater than 1, negative anti-glutamic acid decarboxylase, negative anti-insulin, and confirmed stability of drug/insulin treatment and glycosylated hemoglobin greater than 6.5% for at least 24 and 3 months, respectively, before enrollment. RESULTS: Twenty-four months after surgery, 150 patients (86.6%) presented with normal glycemic levels between 77 and 99 mg/dL. All patients improved average serum insulin levels by 9 mU/L and average glycosylated hemoglobin levels by 5.1% (normal range, 4%-6%). All patients tested negative for Helicobacter pylori and stopped using insulin, with 3 patients prescribed twice-daily use of an oral hypoglycemiant. In 14% of cases, patients experienced partial hair loss with low serum zinc levels and were prescribed oral zinc reposition and topical hair stimulants. The average weight loss recorded was 44.6% for patients with a BMI less than 45 kg/m(2) and 58% for patients with a BMI greater than 50 kg/m(2). CONCLUSIONS: The MLSG is a safe procedure with a low morbidity rate (2.7%) (4 cases of fistula and 2 of bleeding) and no surgical mortality in this study. This surgery can promote control of diabetes mellitus type 2 and aid the treatment of exogenous overweight and morbidly obese individuals. The results of this study show that only through resection of the ghrelin-producing gastric area can most obesity cases and diabetes type II conditions be reverted to nonobese and controlled diabetes. (c) 2012 Elsevier Inc. All rights reserved.