962 resultados para Acacia senegal
Resumo:
Selection of biocontrol agents that are adapted to the climates in areas of intended release demands a thorough analysis of the climates of the source and release sites. We present a case study that demonstrates how use of the CLIMEX software can improve decision making in relation to the identification of prospective areas for exploration for agents to control the woody weed, prickly acacia Acacia nilotica ssp. indica in the arid areas of north Queensland.
Resumo:
A project co-funded by Meat & Livestock Australia and the Queensland Government is putting new life into the search for biocontrol agents for prickly acacia (Acacia nilotica), a Weed of National Significance in Australia.
Resumo:
This book is a resource for those involved ‘on-the-ground’ with growing plantation trees in Vietnam, identifying the pests and diseases found on them, and managing the impacts of these organisms. The book, supported by AusAID’s Vietnam CARD (Cooperation for Agricultural and Rural Development) Program, and draws on the collective, long-standing experience of forest health scientists in Vietnam, Australia and South Africa. The book provides illustrations and information on 23 pests and 25 diseases of Acacia, Eucalyptus and Pinus for Vietnam; four of these species are important biosecurity threats not yet present in Vietnam.
Resumo:
A leaf-feeding geometrid, Chiasmia assimilis (Warren), was introduced into northern Queensland from South Africa in 2002 as a biological control agent for the invasive woody weed, prickly acacia, Acacia nilotica subsp. indica (Bentham) Brenan. The insect established in infestations in coastal areas between the townships of Ayr and Bowen where the larvae periodically cause extensive defoliation at some localities during summer and autumn. The impact of this herbivory on a number of plant parameters, including shoot length, basal stem diameter, root length, number of leaves, number of branches, and above and below ground biomass was investigated at one coastal site through an insect exclusion trial using potted seedlings and regular spray applications of a systemic insecticide to exclude the biological control agent. Half the seedlings, both sprayed and unsprayed, were placed beneath the prickly acacia canopy, the other half were placed in full sunlight. Larvae of C. assimilis were found on unsprayed seedlings in both situations. The effects of herbivory, however, were significant only for seedlings grown beneath the canopy. At the end of the five-month trial period, shoot length of these seedlings was reduced by 30%, basal stem diameter by 44%, root length by 15%, number of leaves by 97%, above ground biomass by 87%, and below ground biomass by 77% when compared to sprayed seedlings. Implications are that the insect, where established, may reduce seedling growth beneath existing canopies and in turn may help limit the formation of dense infestations. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved.
Resumo:
A telial rust on leaves of Acacia pennata ssp. kerrii from Cape York Peninsula is described as Sphaerophragmium quadricellulare sp. nov. No other spore stages have been observed. Brief notes on other related rusts occurring in Australia are given.
Resumo:
The mechanisms of action of Cu 2+ in improving the longevity of cut flowers and foliage have not been elucidated. Possible antimicrobial action of Cu 2+ against stem end and vase solution colonising bacteria was investigated using Cu 2+ treatments optimised for cut Acacia holosericea A. Cunn. ex G. Don foliage stems. These treatments were a 5h pulse with 2.2mM Cu 2+ or a 0.5mM Cu 2+ vase solution versus a deionised water (no Cu 2+) control. Bacterial growth over time was assessed by a standard plate count agar technique and with scanning electron microscopy. Cu 2+ treatments significantly extended the cut foliage vase life. However, they did not have sustained antibacterial activity against stem end or vase solution colonising bacteria. Also, regular recutting of 1-2cm from the stem ends did not substantially improve either cut stem water relations or longevity. The positive effects of Cu 2+ treatments were unaffected by the repeated stem end recutting. It was concluded that the primary mechanism of Cu 2+ was not antibacterial. Moreover, naturally growing vase solution and stem end microbial populations had relatively insignificant effects on cut A. holosericea vase life. Research into alternative mechanisms of Cu 2+ is required. © 2012 Elsevier B.V.
Resumo:
The relative efficacies of three chemically different nano-silver (NS) formulations were evaluated for their potential to extend the vase life of short-lived cut Acacia holosericea foliage. The novel proprietary formulations were neutral NS, acidic NS and ionic NS. They were characterised in terms of particle size, pH value, colour and odour. The NS treatments were applied as vase (lower concentrations) or pulse (higher concentrations) solutions. Among the treatments compared, neutral NS as a 4 mg L-1 vase solution or as a 40 mg L-1 24 h pulse treatment and acidic NS as a 0.5 mg L-1 vase solution or as a 5 mg L-1 24 h pulse treatment significantly (P <= 0.05) extended the vase life of A. holosericea. Vase life extensions over the deionised water (DI) controls were associated with better maintenance of relative fresh weight and vase water uptake, suppression of bacterial growth in the vase water and stem-end, and delaying stem blockage. In contrast, ionic-NS applied as a 0.5 or 1 mg L-1 vase solution treatment or as a 5 or 10 mg L-1 pulse treatment caused severe phytotoxicity to cut A. holosericea stems. The results suggest that NS treatments, especially neutral NS and acidic NS pulse treatments, could be a potential postharvest technology for commercial application to cut A. holosericea. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The two rust fungi, Ravenelia acaciae-arabicae and R. evansii, were both found on Acacia nilotica subsp. indica in southern (Tamil Nadu) and northern (Gujarat) India. R. acaciae-arabicae has been often incorrectly synonymised with R. evansii, although each has distinctive urediniospores, viz. echinulate in R. acaciae-arabicae and verruculose in R. evansii. Both species are re-described and illustrated from fresh specimens collected in India. Herbarium specimens of R. evansii from South Africa, including the holotype, were also examined. The difficulty in connecting different anamorphic spore stages to either of these teleomorphic rusts is highlighted by the presence of similar aecidia on plants of A. robusta infected with R. evansii in South Africa and on A. nilotica subsp. indica infected with R. acaciae-arabicae in India. It is not known whether these aecidial rusts represent the same species, nor is it known if they represent an aecidial stage of either R. acaciae-arabicae, R. evansii or other rusts.
Resumo:
Maintaining a high rate of water uptake is crucial for maximum longevity of cut stems. Physiological gel/tylosis formation decreases water transport efficiency in the xylem. The primary mechanism of action for post-harvest Cu2+ treatments in improving cut flower and foliage longevity has been elusive. The effect of Cu2+ on wound-induced xylem vessel occlusion was investigated for Acacia holosericea A. Cunn. ex G. Don. Experiments were conducted using a Cu2+ pulse (5 h, 2.2 mM) and a Cu2+ vase solution (0.5 mM) vs a deionized water (DIW) control. Development of xylem blockage in the stem-end region 10 mm proximal to the wounded stem surface was examined over 21 days by light and transmission electron microscopy. Xylem vessels of stems stood into DIW were occluded with gels secreted into vessel lumens via pits from surrounding axial parenchyma cells. Gel secretion was initiated within 1-2 days post-wounding and gels were detected in the xylem from day 3. In contrast, Cu2+ treatments disrupted the surrounding parenchyma cells, thereby inhibiting gel secretion and maintaining the vessel lumens devoid of occlusions. The Cu2+ treatments significantly improved water uptake by the cut stems as compared to the control. © 2013 Scandinavian Plant Physiology Society.
Resumo:
Babul scale Anomalococcus indicus Ramakrishna Ayyar, a major pest of Vachellia nilotica (L.f.) P.J.H. Hurter & Mabb. on the Indian subcontinent, has been identified as a potential biocontrol agent for prickly acacia V. nilotica subsp. indica (Benth.) Kyal. & Boatwr. in Australia and was imported from southern India for detailed assessment. The life history of A. indicus under controlled glasshouse conditions was determined as a part of this assessment. Consistent with other scale species, A. indicus has a distinct sexual dimorphism which becomes apparent during the second instar. Females have three instars, developing into sexually mature nymphs after 52 days. The generation time from egg to egg was 89 days. Females are ovoviviparous, ovipositing mature eggs into a cavity underneath their body. An average of 802 +/- 114 offspring were produced per female. Reproductive output was closely associated with female size; larger females produced more than 1200 offspring. Crawlers emerged from beneath the female after an indeterminate period of inactivity. They have the only life stage at which A. indicus can disperse, though the majority settle close to their parent female forming aggregative distributions. In the absence of food, most crawlers died within three days. Males took 62 days to develop through five instars. Unlike females, males underwent complete metamorphosis. Adult males were small and winged, and lived for less than a day. Parthenogenesis was not observed in females excluded from males. The life history of A. indicus allows it to complement other biological control agents already established on prickly acacia in Australia.
Resumo:
Short and variable vase life of cut Acacia holosericea foliage stems limits its commercial potential. Retrospective evaluation of factors affecting the vase life of this cut foliage line was assessed using primary data collected from 30 individual experiments. These data had been collected by four different researchers over 17 months, from late Summer to mid Winter across two consecutive years. Vase life data of cut A. holosericea stems held in deionised water (DIW) was analysed for general vase life variation and to define the most influential factor affecting vase life of the cut stems. Meanwhile, vase life of cut stems exposed to various chemical and physical postharvest treatments was analysed using meta-analysis to evaluate their efficacy in prolonging vase life of the stems. The overall mean vase life (±standard deviation) of cut A. holosericea stems was 6.4 ± 1.2 days (n = 30 trials). Longer vase life of ≥7 days was obtained from cut stems harvested at vegetative and flowering stage, which was between Summer and Autumn. Cut stems harvested at fruiting stage, between Winter and Spring displayed shorter vase life of ≤5.5 days. Mixed model analysis indicated that vase life variation of the cut stems was mostly determined by season (P < 0.001). In averaged, postharvest treatments increased vase life 1.4-fold compared to stems in DIW, with 68.32% had a large positive treatment effect size (d). Among the treatments, nano silver (NS) and copper (Cu2+) were the most beneficial to vase life. Retrospective analysis was found to be beneficial for identifying conditions and targeting practices to maximise the vase life of cut A. holosericea and, potentially for other species.
Resumo:
Prickly acacia, Vachellia nilotica subsp. indica (syn. Acacia nilotica subsp. indica) (Fabaceae), a major weed in the natural grasslands of western Queensland, has been a target of biological control since the 1980s with limited success to date. Surveys in India, based on genetic and climate matching, identified five insects and two rust pathogens as potential agents. Host-specificity tests were conducted for the insects in India and under quarantine conditions in Australia, and for the rust pathogens under quarantine conditions at CABI in the UK. In no-choice tests, the brown leaf-webber, Phycita sp. A, (Lepidoptera: Pyralidae) completed development on 17 non-target plant species. Though the moth showed a clear preference for prickly acacia in oviposition choice trials screening of additional test-plant species was terminated in view of the potential non-target risk. The scale insect Anomalococcus indicus (Hemiptera: Lecanodiaspididae) developed into mature gravid females on 13 out of 58 non-target plant species tested. In the majority of cases very few female scales matured but development was comparable to that on prickly acacia on four of the non-target species. In multiple choice tests, the scale insect showed a significant preference for the target weed over non-target species tested. In a paired-choice trial under field conditions in India, crawler establishment occurred only on prickly acacia and not on the non-target species tested. Further choice trials are to be conducted under natural field conditions in India. A colony of the green leaf-webber Phycita sp. B has been established in quarantine facilities in Australia and host-specificity testing has commenced. The gall-rust Ravenelia acaciae-arabicae and the leaf-rust Ravenelia evansii (Puccineales: Raveneliaceae) both infected and produced viable urediniospores on Vachellia sutherlandii (Fabaceae), a non-target Australian native plant species. Hence, no further testing with the two rust species was pursued. Inoculation trials using the gall mite Aceria liopeltus (Acari: Eriophyidae) from V. nilotica subsp. kraussiana in South Africa resulted in no gall induction on V. nilotica subsp. indica. Future research will focus on the leaf-weevil Dereodus denticollis (Coleoptera: Curculionidae) and the leaf-beetle Pachnephorus sp. (Coleoptera: Chrysomelidae) under quarantine conditions in Australia. Native range surveys for additional potential biological control agents will also be pursued in northern and western Africa.