104 resultados para Abstractive summarization
Resumo:
This action research study of twenty students in my sixth grade mathematics classroom examines the implementation of summarization strategies. Students were taught how to summarize concepts and how to explain their thinking in different ways to the teacher and their peers. Through analysis of students’ summaries of concepts from lessons that I taught, tests scores, and student journals and interviews, I discovered that summarizing mathematical concepts offers students an engaging opportunity to better understand those concepts and render that understanding more visible to the teacher. This analysis suggests that non-traditional summarization, such as verbal and written strategies, and strategies involving movement and discussions, can be useful in mathematics classrooms to improve student understanding, engagement in learning tasks, and as a form of formative assessment.
Resumo:
The realization that statistical physics methods can be applied to analyze written texts represented as complex networks has led to several developments in natural language processing, including automatic summarization and evaluation of machine translation. Most importantly, so far only a few metrics of complex networks have been used and therefore there is ample opportunity to enhance the statistics-based methods as new measures of network topology and dynamics are created. In this paper, we employ for the first time the metrics betweenness, vulnerability and diversity to analyze written texts in Brazilian Portuguese. Using strategies based on diversity metrics, a better performance in automatic summarization is achieved in comparison to previous work employing complex networks. With an optimized method the Rouge score (an automatic evaluation method used in summarization) was 0.5089, which is the best value ever achieved for an extractive summarizer with statistical methods based on complex networks for Brazilian Portuguese. Furthermore, the diversity metric can detect keywords with high precision, which is why we believe it is suitable to produce good summaries. It is also shown that incorporating linguistic knowledge through a syntactic parser does enhance the performance of the automatic summarizers, as expected, but the increase in the Rouge score is only minor. These results reinforce the suitability of complex network methods for improving automatic summarizers in particular, and treating text in general. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The exponential increase of subjective, user-generated content since the birth of the Social Web, has led to the necessity of developing automatic text processing systems able to extract, process and present relevant knowledge. In this paper, we tackle the Opinion Retrieval, Mining and Summarization task, by proposing a unified framework, composed of three crucial components (information retrieval, opinion mining and text summarization) that allow the retrieval, classification and summarization of subjective information. An extensive analysis is conducted, where different configurations of the framework are suggested and analyzed, in order to determine which is the best one, and under which conditions. The evaluation carried out and the results obtained show the appropriateness of the individual components, as well as the framework as a whole. By achieving an improvement over 10% compared to the state-of-the-art approaches in the context of blogs, we can conclude that subjective text can be efficiently dealt with by means of our proposed framework.
Resumo:
In this paper we address two issues. The first one analyzes whether the performance of a text summarization method depends on the topic of a document. The second one is concerned with how certain linguistic properties of a text may affect the performance of a number of automatic text summarization methods. For this we consider semantic analysis methods, such as textual entailment and anaphora resolution, and we study how they are related to proper noun, pronoun and noun ratios calculated over original documents that are grouped into related topics. Given the obtained results, we can conclude that although our first hypothesis is not supported, since it has been found no evident relationship between the topic of a document and the performance of the methods employed, adapting summarization systems to the linguistic properties of input documents benefits the process of summarization.
Resumo:
This paper reports on the further results of the ongoing research analyzing the impact of a range of commonly used statistical and semantic features in the context of extractive text summarization. The features experimented with include word frequency, inverse sentence and term frequencies, stopwords filtering, word senses, resolved anaphora and textual entailment. The obtained results demonstrate the relative importance of each feature and the limitations of the tools available. It has been shown that the inverse sentence frequency combined with the term frequency yields almost the same results as the latter combined with stopwords filtering that in its turn proved to be a highly competitive baseline. To improve the suboptimal results of anaphora resolution, the system was extended with the second anaphora resolution module. The present paper also describes the first attempts of the internal document data representation.
Resumo:
El reciente crecimiento masivo de medios on-line y el incremento de los contenidos generados por los usuarios (por ejemplo, weblogs, Twitter, Facebook) plantea retos en el acceso e interpretación de datos multilingües de manera eficiente, rápida y asequible. El objetivo del proyecto TredMiner es desarrollar métodos innovadores, portables, de código abierto y que funcionen en tiempo real para generación de resúmenes y minería cross-lingüe de medios sociales a gran escala. Los resultados se están validando en tres casos de uso: soporte a la decisión en el dominio financiero (con analistas, empresarios, reguladores y economistas), monitorización y análisis político (con periodistas, economistas y políticos) y monitorización de medios sociales sobre salud con el fin de detectar información sobre efectos adversos a medicamentos.
Resumo:
Automatic Text Summarization has been shown to be useful for Natural Language Processing tasks such as Question Answering or Text Classification and other related fields of computer science such as Information Retrieval. Since Geographical Information Retrieval can be considered as an extension of the Information Retrieval field, the generation of summaries could be integrated into these systems by acting as an intermediate stage, with the purpose of reducing the document length. In this manner, the access time for information searching will be improved, while at the same time relevant documents will be also retrieved. Therefore, in this paper we propose the generation of two types of summaries (generic and geographical) applying several compression rates in order to evaluate their effectiveness in the Geographical Information Retrieval task. The evaluation has been carried out using GeoCLEF as evaluation framework and following an Information Retrieval perspective without considering the geo-reranking phase commonly used in these systems. Although single-document summarization has not performed well in general, the slight improvements obtained for some types of the proposed summaries, particularly for those based on geographical information, made us believe that the integration of Text Summarization with Geographical Information Retrieval may be beneficial, and consequently, the experimental set-up developed in this research work serves as a basis for further investigations in this field.
Resumo:
One of the main challenges to be addressed in text summarization concerns the detection of redundant information. This paper presents a detailed analysis of three methods for achieving such goal. The proposed methods rely on different levels of language analysis: lexical, syntactic and semantic. Moreover, they are also analyzed for detecting relevance in texts. The results show that semantic-based methods are able to detect up to 90% of redundancy, compared to only the 19% of lexical-based ones. This is also reflected in the quality of the generated summaries, obtaining better summaries when employing syntactic- or semantic-based approaches to remove redundancy.
Resumo:
In recent years, Twitter has become one of the most important microblogging services of the Web 2.0. Among the possible uses it allows, it can be employed for communicating and broadcasting information in real time. The goal of this research is to analyze the task of automatic tweet generation from a text summarization perspective in the context of the journalism genre. To achieve this, different state-of-the-art summarizers are selected and employed for producing multi-lingual tweets in two languages (English and Spanish). A wide experimental framework is proposed, comprising the creation of a new corpus, the generation of the automatic tweets, and their assessment through a quantitative and a qualitative evaluation, where informativeness, indicativeness and interest are key criteria that should be ensured in the proposed context. From the results obtained, it was observed that although the original tweets were considered as model tweets with respect to their informativeness, they were not among the most interesting ones from a human viewpoint. Therefore, relying only on these tweets may not be the ideal way to communicate news through Twitter, especially if a more personalized and catchy way of reporting news wants to be performed. In contrast, we showed that recent text summarization techniques may be more appropriate, reflecting a balance between indicativeness and interest, even if their content was different from the tweets delivered by the news providers.
Resumo:
by W. Jett Lauck and Edgar Sydenstricker.
Resumo:
The MESA Puget Sound Project is sponsored by the National Oceanic and Atmospheric Administration and the Environmental Protection Agency.
Resumo:
Reading scientific articles is more time-consuming than reading news because readers need to search and read many citations. This paper proposes a citation guided method for summarizing multiple scientific papers. A phenomenon we can observe is that citation sentences in one paragraph or section usually talk about a common fact, which is usually represented as a set of noun phrases co-occurring in citation texts and it is usually discussed from different aspects. We design a multi-document summarization system based on common fact detection. One challenge is that citations may not use the same terms to refer to a common fact. We thus use term association discovering algorithm to expand terms based on a large set of scientific article abstracts. Then, citations can be clustered based on common facts. The common fact is used as a salient term set to get relevant sentences from the corresponding cited articles to form a summary. Experiments show that our method outperforms three baseline methods by ROUGE metric.©2013 Elsevier B.V. All rights reserved.
Resumo:
Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.
Resumo:
In the last decade, large numbers of social media services have emerged and been widely used in people's daily life as important information sharing and acquisition tools. With a substantial amount of user-contributed text data on social media, it becomes a necessity to develop methods and tools for text analysis for this emerging data, in order to better utilize it to deliver meaningful information to users. ^ Previous work on text analytics in last several decades is mainly focused on traditional types of text like emails, news and academic literatures, and several critical issues to text data on social media have not been well explored: 1) how to detect sentiment from text on social media; 2) how to make use of social media's real-time nature; 3) how to address information overload for flexible information needs. ^ In this dissertation, we focus on these three problems. First, to detect sentiment of text on social media, we propose a non-negative matrix tri-factorization (tri-NMF) based dual active supervision method to minimize human labeling efforts for the new type of data. Second, to make use of social media's real-time nature, we propose approaches to detect events from text streams on social media. Third, to address information overload for flexible information needs, we propose two summarization framework, dominating set based summarization framework and learning-to-rank based summarization framework. The dominating set based summarization framework can be applied for different types of summarization problems, while the learning-to-rank based summarization framework helps utilize the existing training data to guild the new summarization tasks. In addition, we integrate these techneques in an application study of event summarization for sports games as an example of how to better utilize social media data. ^