978 resultados para Absorption co-efficient
Resumo:
Arctic vegetation is characterized by high spatial variability in plant functional type (PFT) composition and gross primary productivity (P). Despite this variability, the two main drivers of P in sub-Arctic tundra are leaf area index (LT) and total foliar nitrogen (NT). LT and NT have been shown to be tightly coupled across PFTs in sub-Arctic tundra vegetation, which simplifies up-scaling by allowing quantification of the main drivers of P from remotely sensed LT. Our objective was to test the LT-NT relationship across multiple Arctic latitudes and to assess LT as a predictor of P for the pan-Arctic. Including PFT-specific parameters in models of LT-NT coupling provided only incremental improvements in model fit, but significant improvements were gained from including site-specific parameters. The degree of curvature in the LT-NT relationship, controlled by a fitted canopy nitrogen extinction co-efficient, was negatively related to average levels of diffuse radiation at a site. This is consistent with theoretical predictions of more uniform vertical canopy N distributions under diffuse light conditions. Higher latitude sites had higher average leaf N content by mass (NM), and we show for the first time that LT-NT coupling is achieved across latitudes via canopy-scale trade-offs between NM and leaf mass per unit leaf area (LM). Site-specific parameters provided small but significant improvements in models of P based on LT and moss cover. Our results suggest that differences in LT-NT coupling between sites could be used to improve pan-Arctic models of P and we provide unique evidence that prevailing radiation conditions can significantly affect N allocation over regional scales.
Resumo:
An initial aim of this project was to evaluate the conventional techniques used in the analysis of newly prepared environmentally friendly water-borne automotive coatings and compare them with solvent-borne coatings having comparable formulations. The investigation was carried out on microtuned layers as well as on complete automotive multi-layer paint systems. Methods used included the very traditional methods of gloss and hardness and the commonly used photo-oxidation index (from FTIR spectral analysis). All methods enabled the durability to weathering of the automotive coatings to be initially investigated. However, a primary aim of this work was to develop methods for analysing the early stages of chemical and property changes in both the solvent-borne and water-borne coating systems that take place during outdoor natural weathering exposures and under accelerated artificial exposures. This was achieved by using dynamic mechanical analysis (DMA), in both tension mode on the microtomed films (on all depths of the coating systems from the uppermost clear-coat right down to the electron-coat) and bending mode of the full (unmicrotomed) systems, as well as MALDI-Tof analysis on the movement of the stabilisers in the full systems. Changes in glass transition temperature and relative cross-link density were determined after weathering and these were related to changes in the chemistries of the binder systems of the coatings after weathering. Concentration profiles of the UV-stabilisers (UVA and HALS) in the coating systems were analysed as a consequence of migration in the coating systems in separate microtomed layers of the paint samples (depth profiling) after weathering and diffusion co-efficient and solubility parameters were determined for the UV stabilisers in the coating systems. The methods developed were used to determine the various physical and chemical changes that take place during weathering of the different (water-borne and solvent-borne) systems (photoxidation). The solvent-borne formulations showed less changes after weathering (both natural and accelerated) than the corresponding water-borne formulations due to the lower level of cross-links in the binders of the water-borne systems. The silver systems examined were more durable than the blue systems due to the reflecting power of the aluminium and the lower temperature of the silver coatings.
Resumo:
EEG Hyperscanning is a method for studying two or more individuals simultaneously with the objective of elucidating how co-variations in their neural activity (i.e., hyperconnectivity) are influenced by their behavioral and social interactions. The aim of this study was to compare the performance of different hyper-connectivity measures using (i) simulated data, where the degree of coupling could be systematically manipulated, and (ii) individually recorded human EEG combined into pseudo-pairs of participants where no hyper-connections could exist. With simulated data we found that each of the most widely used measures of hyperconnectivity were biased and detected hyper-connections where none existed. With pseudo-pairs of human data we found spurious hyper-connections that arose because there were genuine similarities between the EEG recorded from different people independently but under the same experimental conditions. Specifically, there were systematic differences between experimental conditions in terms of the rhythmicity of the EEG that were common across participants. As any imbalance between experimental conditions in terms of stimulus presentation or movement may affect the rhythmicity of the EEG, this problem could apply in many hyperscanning contexts. Furthermore, as these spurious hyper-connections reflected real similarities between the EEGs, they were not Type-1 errors that could be overcome by some appropriate statistical control. However, some measures that have not previously been used in hyperconnectivity studies, notably the circular correlation co-efficient (CCorr), were less susceptible to detecting spurious hyper-connections of this type. The reason for this advantage in performance is discussed and the use of the CCorr as an alternative measure of hyperconnectivity is advocated. © 2013 Burgess.
Resumo:
In this paper is proposed a model for researching the capability to influence, by selected methods’ groups of compression, to the co-efficient of information security of selected objects’ groups, exposed to selected attacks’ groups. With the help of methods for multi-criteria evaluation are chosen the methods’ groups with the lowest risk with respect to the information security. Recommendations for future investigations are proposed.
Resumo:
In this paper a methodology for evaluation of information security of objects under attacks, processed by methods of compression, is represented. Two basic parameters for evaluation of information security of objects – TIME and SIZE – are chosen and the characteristics, which reflect on their evaluation, are analyzed and estimated. A co-efficient of information security of object is proposed as a mean of the coefficients of the parameter TIME and SIZE. From the simulation experiments which were carried out methods with the highest co-efficient of information security had been determined. Assessments and conclusions for future investigations are proposed.
Resumo:
An iterative travel time forecasting scheme, named the Advanced Multilane Prediction based Real-time Fastest Path (AMPRFP) algorithm, is presented in this dissertation. This scheme is derived from the conventional kernel estimator based prediction model by the association of real-time nonlinear impacts that caused by neighboring arcs’ traffic patterns with the historical traffic behaviors. The AMPRFP algorithm is evaluated by prediction of the travel time of congested arcs in the urban area of Jacksonville City. Experiment results illustrate that the proposed scheme is able to significantly reduce both the relative mean error (RME) and the root-mean-squared error (RMSE) of the predicted travel time. To obtain high quality real-time traffic information, which is essential to the performance of the AMPRFP algorithm, a data clean scheme enhanced empirical learning (DCSEEL) algorithm is also introduced. This novel method investigates the correlation between distance and direction in the geometrical map, which is not considered in existing fingerprint localization methods. Specifically, empirical learning methods are applied to minimize the error that exists in the estimated distance. A direction filter is developed to clean joints that have negative influence to the localization accuracy. Synthetic experiments in urban, suburban and rural environments are designed to evaluate the performance of DCSEEL algorithm in determining the cellular probe’s position. The results show that the cellular probe’s localization accuracy can be notably improved by the DCSEEL algorithm. Additionally, a new fast correlation technique for overcoming the time efficiency problem of the existing correlation algorithm based floating car data (FCD) technique is developed. The matching process is transformed into a 1-dimensional (1-D) curve matching problem and the Fast Normalized Cross-Correlation (FNCC) algorithm is introduced to supersede the Pearson product Moment Correlation Co-efficient (PMCC) algorithm in order to achieve the real-time requirement of the FCD method. The fast correlation technique shows a significant improvement in reducing the computational cost without affecting the accuracy of the matching process.
Resumo:
Doutoramento em Gestão
Resumo:
...Diese Dissertation zeigt, wie wir Datenbankmanagementsysteme bauen können, die heterogene Prozessoren effizient und zuverlässig zur Beschleunigung der Anfrageverarbeitung nutzen können. Daher untersuchen wir typische Entwurfsentscheidungen von coprozessorbeschleunigten Datenbankmanagementsystemen und leiten darauf aufbauend eine generische Architektur für solche Systeme ab. Unsere Untersuchungen zeigen, dass eines der wichtigsten Probleme für solche Datenbankmanagementsysteme die Entscheidung ist, welche Operatoren einer Anfrage auf welchem Prozessor ausgeführt werden sollen...
Resumo:
This thesis deals with a hardware accelerated Java virtual machine, named REALJava. The REALJava virtual machine is targeted for resource constrained embedded systems. The goal is to attain increased computational performance with reduced power consumption. While these objectives are often seen as trade-offs, in this context both of them can be attained simultaneously by using dedicated hardware. The target level of the computational performance of the REALJava virtual machine is initially set to be as fast as the currently available full custom ASIC Java processors. As a secondary goal all of the components of the virtual machine are designed so that the resulting system can be scaled to support multiple co-processor cores. The virtual machine is designed using the hardware/software co-design paradigm. The partitioning between the two domains is flexible, allowing customizations to the resulting system, for instance the floating point support can be omitted from the hardware in order to decrease the size of the co-processor core. The communication between the hardware and the software domains is encapsulated into modules. This allows the REALJava virtual machine to be easily integrated into any system, simply by redesigning the communication modules. Besides the virtual machine and the related co-processor architecture, several performance enhancing techniques are presented. These include techniques related to instruction folding, stack handling, method invocation, constant loading and control in time domain. The REALJava virtual machine is prototyped using three different FPGA platforms. The original pipeline structure is modified to suit the FPGA environment. The performance of the resulting Java virtual machine is evaluated against existing Java solutions in the embedded systems field. The results show that the goals are attained, both in terms of computational performance and power consumption. Especially the computational performance is evaluated thoroughly, and the results show that the REALJava is more than twice as fast as the fastest full custom ASIC Java processor. In addition to standard Java virtual machine benchmarks, several new Java applications are designed to both verify the results and broaden the spectrum of the tests.
Resumo:
Some commercial samples of vermicompost from bovine manure (humus) were characterized by thermogravimetry with respect to humidity, organic matter and ash contents, the percentages of which range from 6.55 to 5.35%, 53.01 to 69.96% and 46.44 to 66,14%, respectively. The capacity of adsorption of Cu2+, Zn2+ and Co2+ ions by these samples has been evaluated as a function of pH and time. The contents of several metal ions in the original vermicompost samples have been determined by flame atomic absorption spectrometry after digestion in a microwave oven. The high nitrogen content suggests that the earthworms used in the maturation procedure lead to an efficient degradation of organic matter. The metal retention was affected by both pH and adsorption time. The results also show that adsorption follows the order Cu2+ > Zn2+ > Co2+.
Resumo:
The thesis provides an overall review and introduction to amorphous semiconductors, followed by a brief discussion on the important structural models proposed for chalcogenide glasses and their electrical, optional and thermal properties. It also gives a brief description of the Physics of thin films, ion implantation and Photothermal Deflection Spectroscopy. A brief description of the experimental setup of a photothermal deflection spectrometer and the details of the preparation and optical characterization of the thin film samples. It deals with the employment of the subgap optional absorption measurement by PDS to characterize the defects, amorphization and annealing behavior in silicon implanted with B+ ions and the profiles of ion range and vacancy distribution obtained by the TRIM simulation. It reports the results of all absorption measurements by PDS in nitrogen implanted thin film samples of Ge-Se and As-Se systems
Resumo:
Sub)picosecond transient absorption (TA) and time-resolved infrared (TRIR) spectra of the cluster [OS3(CO)(10-) (AcPy-MV)](2+) (the clication AcPy-MV = Acpy-MV2+ = [2-pyridylacetimine-N-(2-(1'-methyl-4,4'-bipyridine-1,1'-diium-1-yl) ethyl)] (PF6)(2)) (1(2+)) reveal that photoinduced electron transfer to the electron-accepting 4,4'-bipyridine-1,1'diium (MV2+) moiety competes with the fast relaxation of the initially populated sigmapi* excited state of the cluster to the ground state and/or cleavage of an Os-Os bond. The TA spectra of cluster 12 in acetone, obtained by irradiation into its lowest-energy absorption band, show the characteristic absorptions of the one-electron-reduced MV*(+) unit at 400 and 615 nm, in accordance with population of a charge-separated (CS) state in which a cluster-core electron has been transferred to the lowest pi* orbital of the remote MV2+ unit. This assignment is confirmed by picosecond TRIR spectra that show a large shift of the pilot highest-frequency nu(CO) band of 1(2+) by ca. +40 cm(-1), reflecting the photooxidation of the cluster core. The CS state is populated via fast (4.2 x 10(11) s(-1)) and efficient (88%) oxidative quenching of the optically populated sigmapi* excited state and decays biexponentially with lifetimes of 38 and 166 ps (1:2:1 ratio) with a complete regeneration of the parent cluster. About 12% of the cluster molecules in the sigmapi* excited state form long-lived open-core biradicals. In strongly coordinating acetonitrile, however, the cluster core-to-MV2+ electron transfer in cluster 12+ results in the irreversible formation of secondary photoproducts with a photooxidized cluster core. The photochemical behavior of the [Os-3(CO)(10)(alpha-diimine-MV)](2+) (donor-acceptor) dyad can be controlled by an externally applied electronic bias. Electrochemical one-electron reduction of the MV2+ moiety prior to the irradiation reduces its electron-accepting character to such an extent that the photoinduced electron transfer to MV*+ is no longer feasible. Instead, the irradiation of reduced cluster 1(.)+ results in the reversible formation of an open-core zwitterion, the ultimate photoproduct also observed upon irradiation of related nonsubstituted clusters [Os-3(CO)(10)(alpha-diimine)] in strongly coordinating solvents such as acetonitrile.
Resumo:
The lithium salt of the anionic SPS pincer ligand composed of a central hypervalent lambda(4)-phosphinine ring bearing two ortho-positioned diphenylphosphine sulfide side arms reacts with [Mn(CO)(5)Br] to give fac-[Mn(SPS)(CO)(3)], This isomer can be converted photochemicaily to mer-[Mn(SPS)(CO)(3)], with a very high quantum yield (0.80 +/- 0.05). The thermal backreaction is slow (taking ca. 8 h at room temperature), in contrast to rapid electrodecatalyzed mer-to-fac isomerization triggered by electrochemical reduction of mer-[Mn(SPS)(CO)(3)]. Both geometric isomers of [Mn(SPS)(CO)(3)] have been characterized by X-ray crystallography. Both isomers show luminescence from a low-lying (IL)-I-3 (SPS-based) excited state. The light emission of fac-[Mn(SPS)(CO)(3)] is largely quenched by the efficient photoisomerization occurring probably from a low-lying Mn-CO dissociative excited state. Density functional theory (DFT) and time-dependent DFT calculations describe the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of fac- and mer-[Mn(CO)(3)(SPS)] as ligand-centered orbitals, largely localized on the phosphinine ring of the SPS pincer ligand. In line with the ligand nature of its frontier orbitals, fac-[Mn(SPS)(CO)(3)] is electrochemically reversibly oxidized and reduced to the corresponding radical cation and anion, respectively. The spectroscopic (electron paramagnetic resonance, IR, and UV-vis) characterization of the radical species provides other evidence for the localization of the redox steps on the SIPS ligand. The smaller HOMO-LUMO energy difference in the case of mer-[Mn(CO)(3)(SPS)], reflected in the electronic absorption and emission spectra, corresponds with its lower oxidation potential compared to that of the fac isomer. The thermodynamic instability of mer-[Mn(CO)(3)(SPS)], confirmed by the DFT calculations, increases upon one-electron reduction and oxidation of the complex.
Resumo:
The lowest absorption band of fac-[Re(Cl)(CO)(3)(5-NO2-phen)] encompasses two close-lying MLCT transitions. The lower one is directed to LUMO, which is heavily localized on the NO2 group. The UV-vis absorption spectrum is well accounted for by TD-DFT (G03/PBEPBE1/CPCM), provided that the solvent, MeCN, is included in the calculations. Near-UV excitation of fac-[Re(Cl)(CO)(3)(5-NO2-phen)] populates a triplet metal to ligand charge-transfer excited state, (MLCT)-M-3, that was characterized by picosecond time-resolved IR spectroscopy. Large positive shifts of the v(CO) bands upon excitation (+70 cm(-1) for the A'(1) band) signify a very large charge separation between the Re(Cl)(CO)3 unit and the 5-NO2-phen ligand. Details of the excited-state character are revealed by TD-DFT calculated changes of electron density distribution. Experimental excited-state v(CO) wavenumbers agree well with those calculated by DFT. The (MLCT)-M-3 state decays with a ca. 10 ps lifetime (in MeCN) into another transient species, that was identified by TRIR and TD-DFT calculations as an intraligand (3)n pi* excited state, whereby the electron density is excited from the NO2 oxygen lone pairs to the pi* system of 5-NO2-phen. This state is short-lived, decaying to the ground state with a similar to 30 ps lifetime. The presence of an n pi* state seems to be the main factor responsible for the lack of emission and the very short lifetimes of 3 MLCT states seen in all d(6)-metal complexes of nitro-polypyridyl ligands. Localization of the excited electron density in the lowest (MLCT)-M-3 states parallels localization of the extra electron in the reduced state that is characterized by a very small negative shift of the v(CO) IR bands (-6 cm(-1) for A'(1)) but a large downward shift of the v(s)(NO2) IR band. The Re-Cl bond is unusually stable toward reduction, whereas the Cl ligand is readily substituted upon oxidation.
Resumo:
Electrochemical and photochemical properties of the tetrahedral cluster [Ru3Ir(mu(3)-H)(CO)(13)] were studied in order to prove whether the previously established thermal conversion of this cluster into the hydrogenated derivative [Ru3Ir(mu-H)(3)(CO)(12)] also occurs by means of redox or photochemical activation. Two-electron reduction of [Ru3Ir(mu(3)-H)(CO)(13)] results in the loss of CO and concomitant formation of the dianion [Ru3Ir(mu(3)-H)(CO)(12)](2-). The latter reduction product is stable in CH2Cl2 at low temperatures but becomes partly protonated above 283 K into the anion [Ru3Ir(mu-H)(2)(CO)(12)](-) by traces of water. The dianion [Ru3Ir(mu(3)-H)(CO)(12)](2-) is also the product of the electrochemical reduction of [Ru3Ir(mu-H)(3)(CO)(12)] accompanied by the loss of H-2. Stepwise deprotonation of [Ru3Ir(mu-H)(3)(CO)(12)] with Et4NOH yields [Ru3Ir(mu-H)(2)(CO)(12)](-) and [Ru3Ir(mu(3)-H)(CO)(12)](2-). Reverse protonation of the anionic clusters can be achieved, e. g., with trifluoromethylsulfonic acid. Thus, the electrochemical conversion of [Ru3Ir(mu(3)-H)(CO)(13)] into [Ru3Ir(mu-H)(3)(CO)(12)] is feasible, demanding separate two-electron reduction and protonation steps. Irradiation into the visible absorption band of [Ru3Ir(mu3-H)(CO)(13)] in hexane does not induce any significant photochemical conversion. Irradiation of this cluster in the presence of CO with lambda(irr) > 340 nm, however, triggers its efficient photofragmentation into reactive unsaturated ruthenium and iridium carbonyl fragments. These fragments are either stabilised by dissolved CO or undergo reclusterification to give homonuclear clusters. Most importantly, in H-2-saturated hexane, [Ru3Ir(mu(3)-H)(CO)(13)] converts selectively into the [Ru3Ir(mu-H)(3)(CO)(12)] photoproduct. This conversion is particularly efficient at lambda(irr) > 340 nm.