971 resultados para Above-Threshold Ionization
Resumo:
A fundamental problem for any visual system with binocular overlap is the combination of information from the two eyes. Electrophysiology shows that binocular integration of luminance contrast occurs early in visual cortex, but a specific systems architecture has not been established for human vision. Here, we address this by performing binocular summation and monocular, binocular, and dichoptic masking experiments for horizontal 1 cycle per degree test and masking gratings. These data reject three previously published proposals, each of which predict too little binocular summation and insufficient dichoptic facilitation. However, a simple development of one of the rejected models (the twin summation model) and a completely new model (the two-stage model) provide very good fits to the data. Two features common to both models are gently accelerating (almost linear) contrast transduction prior to binocular summation and suppressive ocular interactions that contribute to contrast gain control. With all model parameters fixed, both models correctly predict (1) systematic variation in psychometric slopes, (2) dichoptic contrast matching, and (3) high levels of binocular summation for various levels of binocular pedestal contrast. A review of evidence from elsewhere leads us to favor the two-stage model. © 2006 ARVO.
Resumo:
Photoelectron angular distributions produced in above-threshold ionization (ATI) are analysed using a nonperturbative scattering theory. The numerical results are in good qualitative agreement with recent measurements. Our study shows that the origin of the jet-like structure arises from the inherent properties of the ATI process and not from the angular momentum of either the initial or the excited states of the atom.
Resumo:
The photoelectron angular distributions (PADs) from above-threshold ionization of atoms irradiated by one-cycle laser pulses satisfy a scaling law. The scaling law denotes that the main features of the PADs are determined by four dimensionless parameters: (1) the ponderomotive number u(p) = U-p/hw, the ponderomotive energy U-p in units of laser photon energy; (2) the binding number E-b = E-b/h(w), the atomic binding energy E-b in units of laser photon energy; (3) the number of absorbed photons q; (4) the carrier-envelope phase phi(0), the phase of the carrier wave with respect to the envelope. We verify the scaling law by theoretical analysis and numerical calculation, compared to that in long-pulse case. A possible experimental test to verify the scaling law is suggested.
Resumo:
采用基于Guo,Aberg和Crasemann发展的强激光场中的非微扰量子散射理论(GAC理论),研究了线偏振双色激光场中氪(Kr)原子阈上电离的光电子角分布,双色激光场由一系列相同的单周期激光脉冲组成.研究发现光电子角分布有强烈的位相依赖关系,且呈现出反演不对称性、喷射结构和展宽结构等现象.这为实验上通过改变双色激光场的相对相位来观察和控制光电子角分布提供了一种有效的方法.
Resumo:
Photoelectron angular distributions (PADs) from above-threshold ionization of O-2 and N-2 molecules irradiated by a bichromatic laser field of circular polarization are Studied. The bichromatic laser field is specially modulated such that it can be used to mimic a sequence of one-cycle laser pulses. The PADs are greatly affected by the molecular alignment, the symmetry of the initial electronic distribution, and the carrier-envelope phase of the laser pulses. Generally, the PADs do not show any symmetry, and become symmetric about an axis only when the symmetric axis of laser field coincides with the symmetric axis of molecules. This study shows that the few-cycle laser pulses call be used to steer the photoelectrons and perform the selective ionization of molecules. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Two-color above threshold ionization of helium and xenon has been used to analyze the synchronization between individual pulses of the femtosecond extreme ultraviolet (XUV) free electron laser in Hamburg and an independent intense 120 fs mode-locked Ti:sapphire laser. Characteristic sidebands appear in the photoelectron spectra when the two pulses overlap spatially and temporally. The cross-correlation curve points to a 250 fs rms jitter between the two sources at the experiment. A more precise determination of the temporal fluctuation between the XUV and infrared pulses is obtained through the analysis of the single-shot sideband intensities. ©2007 American Institute of Physics
Resumo:
Die Arbeit befasst sich mit dem Zusammenhang zwischen einfachen Molekülen und deren Verhalten in starken, kurzen Laserfeldern. Einerseits wird versucht, strukturelle Daten des Moleküls in den Elektronen- und Photonenspektren wiederzuerkennen. Andererseits geht es darum, ein Bild der elektronischen Wellenfunktion aus den spektralen Daten abzuleiten.
Resumo:
Near-threshold ionization of He has been studied by using a uniform semiclassical wavefunction for the two outgoing electrons in the final channel. The quantum mechanical transition amplitude for the direct and exchange scattering derived earlier by using the Kohn variational principle has been used to calculate the triple differential cross sections. Contributions from singlets and triplets are critically examined near the threshold for coplanar asymmetric geometry with equal energy sharing by the two outgoing electrons. It is found that in general the tripler contribution is much smaller compared to its singlet counterpart. However, at unequal scattering angles such as theta (1) = 60 degrees, theta (2) = 120 degrees the smaller peaks in the triplet contribution enhance both primary and secondary TDCS peaks. Significant improvements of the primary peak in the TDCS are obtained for the singlet results both in symmetric and asymmetric geometry indicating the need to treat the classical action variables without any approximation. Convergence of these cross sections are also achieved against the higher partial waves. Present results are compared with absolute and relative measurements of Rosel et al (1992 Phys. Rev. A 46 2539) and Selles et al (1987 J. Phys. B. At. Mel. Phys. 20 5195) respectively.
Resumo:
A systematic study of the ionization of atomic hydrogen by electron impact from 0.3 eV to a few eV above the ionization threshold has been carried out using a semiclassical-quantal calculation. Differential and integrated cross sections are presented at 0.3 eV above the energy threshold. Triple- differential cross sections (TDCS) are presented at constant theta(12) geometry where theta(12)=180degrees and 150degrees. Good agreement is achieved with the measurement [Roder, Phys. Rev. Lett. 79, 1666 (1997)] and calculations based on exterior complex scaling at 2 eV and 4 eV above threshold. Results of triple-differential cross sections are also presented at 0.3, 0.5, and 1.0 eV above threshold at both theta(12)=180degrees and 150degrees. At theta(12)=180degrees the small local maximum in the TDCS around theta(1)=90degrees reported by Pan and Starace [Phys. Rev. A 45, 4588 (1992)] at 0.5 eV above threshold is not observed in our calculation at energies down to 0.3 eV above threshold. The shape of our double differential cross sections seems to disagree qualitatively with the available calculations as we found two local maxima around 15degrees and 165degrees in our calculation. Single differential cross sections in our formulation appear naturally as a function of total excess energy E and, therefore, constant for all combinations of individual electron energies E-1 and E- 2 with E=E-1+E-2. Total ionization cross sections are also compared with measurement and available theoretical calculations and found to be in reasonably good agreement up to 10 eV above ionization threshold.
Resumo:
The initial image-processing stages of visual cortex are well suited to a local (patchwise) analysis of the viewed scene. But the world's structures extend over space as textures and surfaces, suggesting the need for spatial integration. Most models of contrast vision fall shy of this process because (i) the weak area summation at detection threshold is attributed to probability summation (PS) and (ii) there is little or no advantage of area well above threshold. Both of these views are challenged here. First, it is shown that results at threshold are consistent with linear summation of contrast following retinal inhomogeneity, spatial filtering, nonlinear contrast transduction and multiple sources of additive Gaussian noise. We suggest that the suprathreshold loss of the area advantage in previous studies is due to a concomitant increase in suppression from the pedestal. To overcome this confound, a novel stimulus class is designed where: (i) the observer operates on a constant retinal area, (ii) the target area is controlled within this summation field, and (iii) the pedestal is fixed in size. Using this arrangement, substantial summation is found along the entire masking function, including the region of facilitation. Our analysis shows that PS and uncertainty cannot account for the results, and that suprathreshold summation of contrast extends over at least seven target cycles of grating. © 2007 The Royal Society.
Resumo:
本文研究了飞秒激光脉冲在水中的传输情况.通过改变不同的激光输入功率进行模拟,我们发现从输入功率略高于到远远高于发生自聚焦的临界功率,分别是群速度色散和多光子电离多光子吸收阻止了自聚焦导致的脉冲塌陷,当多光子电离和多光子吸收主导传输时,脉冲能被压缩到几个光学周期.在频域,多光子电离能引起很强的蓝移,而多光子吸收能对这种蓝移起到抑制作用。
Resumo:
We report a study on resonance enhanced multiphoton ionization photoelectron spectroscopy (REMPI-PES) involving the fast predissociative (A) over tilde state of ammonia, using nano- and femtosecond lasers. The multiphoton scheme involves (1 + 1), (2 + 2), (2 + 2) + 1 and (2 + 2) + 2 photon processes. We have found a progression of stretching vibrations nu(1) in the PE spectrum when pumping NH3 (A) over tilde upsilon(2) = 0, 1 and 3 as intermediate states. The stretching vibration intensity distributions in the photoelectron spectrum are calculated by using the Chebychev method of the wavepacket propagation. The femtosecond spectrum shows a similar feature to the nanosecond spectrum. However, high laser power also causes band broadening and shifting effect as well as above threshold multiphoton ionization.
Resumo:
The continuum distorted-wave eikonal-initial-state (CDW-EIS) theory of Crothers and McCann (Crothers DSF and McCann JF, 1983 J. Phys. B: At. Mol. Opt. Phys. 16 3229 ) used to describe ionization in ion-atom collisions is generalized (G) to GCDW-EIS, to incorporate the azimuthal ange dependence into the final-state wavefunction. This is accomplished by the analytic continuation of hydrogenic-like wavefunctions from below to above threshold, using parabolic coordinates and quantum numbers including magnetic quantum numbers, thus providing a more complete set of states. At impact energies lower than 25 ke V u^{-1}, the total CDW-EIS ionization cross section falls off, with decreasing energy, too quickly in comparison with experimental data by Crothers and McCann. The idea behind and motivation for the GCDW-EIS model is to improve the theory with respect to experiment, by including contributions from non-zero magnetic quantum numbers. We also therefore incidentally provide a new derivation of the theory of continuum distorted waves for zero magnetic quantum numbers while simultaneously generalizing it.
Resumo:
The continuum distorted-wave eikonal initial-state (CDW-EIS) theory of Crothers and McCann (J Phys B 1983, 16, 3229) used to describe ionization in ion-atom collisions is generalized (G) to GCDW-EIS to incorporate the azimuthal angle dependence of each CDW in the final-state wave function. This is accomplished by the analytic continuation of hydrogenic-like wave functions from below to above threshold, using parabolic coordinates and quantum numbers including magnetic quantum numbers, thus providing a more complete set of states. At impact energies lower than 25 keVu(-1), the total ionization cross-section falls off, with decreasing energy, too quickly in comparison with experimental data. The idea behind and motivation for the GCDW-EIS model is to improve the theory with respect to experiment by including contributions from nonzero magnetic quantum numbers. We also therefore incidentally provide a new derivation of the theory of continuum distorted waves for zero magnetic quantum numbers while simultaneously generalizing it. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Polar photodissociation of CFnCl4-n (n=0-2) has been studied using synchrotron radiation within the energy range 195-217 eV. The first observations of negative photoion fragments from these molecules after core excitation are reported. In addition to observing a number of previously known resonances two additional resonant states, just above the Cl 2p ionization limit, are observed and play an important role in the polar photodissociation process. The difficulties in identifying these above threshold spin-split features using negative photoion spectroscopy are discussed.