995 resultados para ATOM-PROBE TOMOGRAPHY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper reviews recent progress in atomic-scale characterisation of composition and nanostructure of light alloy materials using the technique of atom probe tomography. In particular, the present review will highlight atom-by-atom analysis of solid solution architecture, including solute clustering and short-range order, with reference to current limitations of spatial resolution and detector efficiency of atom probe tomography and methods to address these limitations. This leads to discussion of prediction of mechanical properties by simulation and modelling of the strengthening effect exerted by solute clusters and the role of experimental atom probe data to assist in this process. The unique contribution of atom probe tomography to the study of corrosion and hydrogen embrittlement of light alloys will also be discussed as well as a brief insight into its potential application for the investigation of solute strengthening of twinning in Mg alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study an Fe-18Al (at.%) alloy after various thermal treatments at different times (24-336 h) and temperatures (250-1100 °C) to determine the nature of the so-called 'komplex' phase state (or "K-state"), which is common to other alloy systems having compositions at the boundaries of known order-disorder transitions and is characterised by heterogeneous short-range-ordering (SRO). This has been done by direct observation using atom probe tomography (APT), which reveals that nano-sized, ordered regions/particles do not exist. Also, by employing shell-based analysis of the three-dimensional atomic positions, we have determined chemically sensitive, generalised multicomponent short-range order (GM-SRO) parameters, which are compared with published pairwise SRO parameters derived from bulk, volume-averaged measurement techniques (e.g. X-ray and neutron scattering, Mössbauer spectroscopy) and combined ab-initio and Monte Carlo simulations. This analysis procedure has general relevance for other alloy systems where quantitative chemical-structure evaluation of local atomic environments is required to understand ordering and partial ordering phenomena that affect physical and mechanical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short-range-order (SRO) has been quantitatively evaluated in an Fe-18Al (at%) alloy using atom probe tomography (APT) data and by calculation of the generalised multicomponent short-range order (GM-SRO) parameters, which have been determined by shell-based analysis of the three-dimensional atomic positions. The accuracy of this method with respect to limited detector efficiency and spatial resolution is tested against simulated D03 ordered data. Whilst there is minimal adverse effect from limited atom probe instrument detector efficiency, the combination of this with imperfect spatial resolution has the effect of making the data appear more randomised. The value of lattice rectification of the experimental APT data prior to GM-SRO analysis is demonstrated through improved information sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bimetallic alloys are increasingly used in heterogeneous catalysis. This interest is explained by the emergence of new features that are absent in the parent single metals. Synergistic effects between the two combined elements create a more efficient catalyst. One of the most challenging aspect of multicomponent materials in catalysis is the ability to fine-tune the catalytic properties of an alloy by controlling the nature and composition of the surface [1]. For example, the gold/silver alloy combines a high activity and a large selectivity for a broad range of oxidation reaction.It is well established that the surface composition of alloys may deviate from that of the bulk phase. Surface enrichment has also important consequences in some applications of heterogeneous catalysis. In some cases, the thermal and chemical treatments can lead to opposite trends regarding the nature of the metal prone to surface enrichment. Using atom probe tomography we aim to link the physicochemical conditions the composition of the very first atomic layers of bimetallic catalysts and eventually to fine-tune the catalytic features of the latter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the investigation of the off-stoichiometry and site-occupancy of κ-carbide precipitates within an austenitic (γ), Fe-29.8Mn-7.7Al-1.3C (wt.%) alloy using a combination of atom probe tomography and density functional theory. The chemical composition of the κ-carbides as measured by atom probe tomography indicates depletion of both interstitial C and substitutional Al, in comparison to the ideal stoichiometric L′12 bulk perovskite. In this work we demonstrate that both these effects are coupled. The off-stoichiometric concentration of Al can, to a certain extent, be explained by strain caused by the κ/γ mismatch, which facilitates occupation of Al sites in κ-carbide by Mn atoms (MnγAl anti-site defects). The large anti-site concentrations observed by our experiments, however, can only be stabilized if there are C vacancies in the vicinity of the anti-site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: The Australian Microscopy & Microanalysis Research Facility (AMMRF) operates a national atom probe laboratory at The University of Sydney. This paperprovides a brief review and update of the technique of atom probe tomography (APT),together with a summary of recent research applications at Sydney in the scienceand technology of materials. We describe recent instrumentation advances such asthe use of laser pulsing to effect time-controlled field evaporation, the introductionof wide field of view detectors, where the solid angle for observation is increased byup to a factor of ∼20 as well as innovations in specimen preparation. We concludethat these developments have opened APT to a range of new materials that werepreviously either difficult or impossible to study using this technique because of theirpoor conductivity or brittleness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex multiphase microstructures were obtained in transformation induced plasticity C–Mn–Si–(Nb–Al–Mo) steels by simulated controlled thermomechanical processing. These microstructures were characterized using transmission electron microscopy, X-ray diffraction and three-dimensional atom probe tomography (APT), which was used to determine the partitioning of elements between different phases and microconstituents. The measured carbon concentration (not, vert, similar0.25 at%) in the ferrite of carbide-free bainite was higher than expected from para-equilibrium between the austenite and ferrite, while the concentrations of substitutional elements were the same as in the parent austenite suggesting that incomplete bainite transformation occurred. In contrast, the distribution of substitutional elements between the ferrite lath and austenite in carbide-containing bainite indicated a complete bainite reaction. The average carbon content in the retained austenite (3.2 ± 1.6 at%) was somewhat higher than the T0 limit. On the basis of the APT measured composition, the calculated Ms temperatures for retained austenite were above room temperature, indicating its low chemical stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have achieved three-dimensional imaging of decanethiol self-assembled monolayers (SAMs) on metal surfaces by atom probe tomography (APT). The present Letter provides preliminary results on Ni [001] and Au [111], shows the analytical potential of APT analysis of SAMs, and details developments in specimen preparation and in data-treatment methodologies. Importantly, the investigation of the mass spectra from analysis of the SAMs revealed no combination of sulfur and hydrogen at the interface between the metal substrates and the organic materials, potentially providing insight about the bonding of the thiols on the substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whilst atom probe tomography (APT) is a powerful technique with the capacity to gather information containing hundreds of millions of atoms from a single specimen, the ability to effectively use this information creates significant challenges. The main technological bottleneck lies in handling the extremely large amounts of data on spatial-chemical correlations, as well as developing new quantitative computational foundations for image reconstruction that target critical and transformative problems in materials science. The power to explore materials at the atomic scale with the extraordinary level of sensitivity of detection offered by atom probe tomography has not been not fully harnessed due to the challenges of dealing with missing, sparse and often noisy data. Hence there is a profound need to couple the analytical tools to deal with the data challenges with the experimental issues associated with this instrument. In this paper we provide a summary of some key issues associated with the challenges, and solutions to extract or "mine" fundamental materials science information from that data.