972 resultados para AT(2) RECEPTORS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background-In adult human heart, both beta(1)- and beta(2)-adrenergic receptors mediate hastening of relaxation; however, it is unknown whether this also occurs in infant heart. We compared the effects of stimulation of beta(1)- and beta(2)-adrenergic receptors on relaxation and phosphorylation of phospholamban and troponin I in ventricle obtained from infants with tetralogy of Fallot. Methods and Results-Myocardium dissected from the right ventricular outflow tract of 27 infants (age range 2-1/2 to 35 months) with tetralogy of Fallot was set up to contract 60 times per minute. Selective stimulation of beta(1)-adrenergic receptors with (-)-norepinephrine (NE) and beta(2)-adrenergic receptors with (-)-epinephrine (EPI) evoked phosphorylation of phospholamban (at serine-16 and threonine-17) and troponin I and caused concentration-dependent increases in contractile force (-log EC50 [mol/L] NE 5.5+/-0.1, n=12; -EPI 5.6+/-0.1, n=13 patients), hastening of the time to reach peak force (-log EC50 [mol/L] NE 5.8+/--0.2; EPI 5.8+/-0.2) and 50% relaxation (-log EC50 [mol/L] NE 5.7+/-0.2: EPI 5.8+/-0.1), Ventricular membranes from Fallot infants, labeled with (-)-[I-125]-cyanopindolol, revealed a greater percentage of beta(1)- (71%) than beta(2)-adrenergic receptors (29%). Binding of (-)-epinephrine to beta(2)-receptors underwent greater GTP shifts than binding of (-)-norepinephrine to beta(1)-receptors. Conclusions-Despite their low density, beta(2)-adrenergic receptors are nearly as effective as beta(1)-adrenergic receptors of infant Fallot ventricle in enhancing contraction, relaxation, and phosphorylation of phospholamban and troponin I, consistent with selective coupling to G(s)-protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human D-2Long (D-2L) and D-2Short (D-2S) dopamine receptor isoforms were modified at their N-terminus by the addition of a human immunodeficiency virus (HIV) or a FLAG epitope tag. The receptors were then expressed in Spodoptera frugiperda 9 (Sf9) cells using the baculovirus system, and their oligomerization was investigated by means of co-immunoprecipitation and time-resolved fluorescence resonance energy transfer (FRET). [H-3] Spiperone labelled D-2 receptors in membranes prepared from Sf9 cells expressing epitope-tagged D-2L or D-2S receptors, with a pK(d) value of approximate to 10. Co-immunoprecipitation using antibodies specific for the tags showed constitutive homo-oligomerization of D-2L and D-2S receptors in Sf9 cells. When the FLAG-tagged D-2S and HIV-tagged D-2L receptors were co-expressed, co-immunoprecipitation showed that the two isoforms can also form hetero-oligomers in Sf9 cells. Time-resolved FRET with europium and XL665-labelled antibodies was applied to whole Sf9 cells and to membranes from Sf9 cells expressing epitope-tagged D-2 receptors. In both cases, constitutive homo-oligomers were revealed for D-2L and D-2S isoforms. Time-resolved FRET also revealed constitutive homo-oligomers in HEK293 cells expressing FLAG-tagged D-2S receptors. The D-2 receptor ligands dopamine, R-(-) propylnorapomorphine, and raclopride did not affect oligomerization of D-2L and D-2S in Sf9 and HEK293 cells. Human D-2 dopamine receptors can therefore form constitutive oligomers in Sf9 cells and in HEK293 cells that can be detected by different approaches, and D-2 oligomerization in these cells is not regulated by ligands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interaction of G-protein-coupled receptors with beta-arrestins is an important step in receptor desensitization and in triggering "alternative" signals. By means of confocal microscopy and fluorescence resonance energy transfer, we have investigated the internalization of the human P2Y receptors 1, 2, 4, 6, 11, and 12 and their interaction with beta-arrestin-1 and -2. Co-transfection of each individual P2Y receptor with beta-arrestin-1-GFP or beta-arrestin-2-YFP into HEK-293 cells and stimulation with the corresponding agonists resulted in a receptor-specific interaction pattern. The P2Y(1) receptor stimulated with ADP strongly translocated beta-arrestin-2-YFP, whereas only a slight translocation was observed for beta-arrestin-1-GFP. The P2Y(4) receptor exhibited equally strong translocation for beta-arrestin-1-GFP and beta-arrestin-2YFP when stimulated with UTP. The P2Y(6), P2Y(11), and P2Y(12) receptor internalized only when GRK2 was additionally cotransfected, but beta-arrestin translocation was only visible for the P2Y(6) and P2Y(11) receptor. The P2Y(2) receptor showed a beta-arrestin translocation pattern that was dependent on the agonist used for stimulation. UTP translocated beta-arrestin-1-GFP and beta-arrestin-2-YFP equally well, whereas ATP translocated beta-arrestin-1-GFP to a much lower extent than beta-arrestin2- YFP. The same agonist-dependent pattern was seen in fluorescence resonance energy transfer experiments between the fluorescently labeled P2Y(2) receptor and beta-arrestins. Thus, the P2Y(2) receptor would be classified as a class A receptor when stimulated with ATP or as a class B receptor when stimulated with UTP. The ligand-specific recruitment of beta-arrestins by ATP and UTP stimulation of P2Y(2) receptors was further found to result in differential stimulation of ERK phosphorylation. This suggests that the two different agonists induce distinct active states of this receptor that show differential interactions with beta-arrestins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The environmental chemical 1,2-naphthoquinone (1,2-NQ) is implicated in the exacerbation of airways diseases induced by exposure to diesel exhaust particles (DEP), which involves a neurogenic-mediated mechanism. Plasma extravasation in trachea, main bronchus and lung was measured as the local (125)I-bovine albumin accumulation. RT-PCR quantification of TRPV1 and tachykinin (NK(1) and NK(2)) receptor gene expression were investigated in main bronchus. Intratracheal injection of DEP (1 and 5 mg/kg) or 1,2-NQ (35 and 100 nmol/kg) caused oedema in trachea and bronchus. 1,2-NQ markedly increased the DEP-induced responses in the rat airways in an additive rather than synergistic manner. This effect that was significantly reduced by L-732,138, an NK(1) receptor antagonist, and in a lesser extent by SR48968, an NK(2) antagonist. Neonatal capsaicin treatment also markedly reduced DEP and 1,2-NQ-induced oedema. Exposure to pollutants increased the TRPV1, NK(1) and NK(2) receptors gene expression in bronchus, an effect was partially suppressed by capsaicin treatment. In conclusion, our results are consistent with the hypothesis that DEP-induced airways oedema is highly influenced by increased ambient levels of 1,2-NQ and takes place by neurogenic mechanisms involving up-regulation of TRPV1 and tachykinin receptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims: To evaluate the reliability of fine needle aspirate cell blocks in the assessment of oestrogen receptor (ER), progesterone receptor (PR) and HER-2/neu proteins by immunohistochemistry in comparison with surgical specimens. Materials and methods: This is a retrospective study of 62 cases of breast carcinoma diagnosed by fine needle aspiration cytology (FNAC) and confirmed using the surgical specimen. Immunohistochemical tests were performed to assess the presence of oestrogen receptor (ER), progesterone receptor (PR) and HER-2/neu proteins in cell blocks and the corresponding surgical specimens. The cell block method used alcohol prior to formalin fixation. Cases with 10% or more stained cells were considered positive for ER and PR. Positivity for HER-2/neu was assessed on a scale of 0-3+. The criterion for positivity was a score of 3+. Results: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of the cell blocks in the investigation of ER, PR and HER-2/neu protein (3+) were (%): ER, 92.7, 85.7, 92.7, 85.7 and 90.3; PR, 92.7, 94.7, 97.4, 87.0 and 93.5; HER-2/neu, 70.0, 100.0, 100.0, 94.5 and 95.2. Discrepancies were seen in cell blocks in the 1+ and 2+ HER-2/neu staining scores: two of 12 cases scoring 2+ and one case of 26 scoring 1+ on cell blocks scored 3+ on surgical specimens. The correlation index between cell block and corresponding surgical specimen varied from 90% to 94%. Conclusion: Cell blocks provide a useful method of assessing ER, PR and HER-2/neu, mainly for inoperable and recurrent cases, but consideration should be given to carrying out FISH analysis on 1+ as well as 2+ HER-2/neu results. © 2012 Blackwell Publishing Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pharmacological activation of cannabinoid CB(1) and CB(2) receptors is a therapeutic strategy to treat chronic and inflammatory pain. It was recently reported that a mixture of natural triterpenes α- and β-amyrin bound selectively to CB(1) receptors with a subnanomolar K(i) value (133 pM). Orally administered α/β-amyrin inhibited inflammatory and persistent neuropathic pain in mice through both CB(1) and CB(2) receptors. Here, we investigated effects of amyrins on the major components of the endocannabinoid system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radiolabeled antagonists of specific peptide receptors identify a higher number of receptor binding sites than agonists and may thus be preferable for in vivo tumor targeting. In this study, two novel radioiodinated 1,4-benzodiazepines, (S)-1-(3-iodophenyl)-3-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)urea (9) and (R)-1-(3-iodophenyl)-3-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)urea (7), were developed. They were characterized in vitro as high affinity selective antagonists at cholecystokinin types 1 and 2 (CCK(1) and CCK(2)) receptors using receptor binding, calcium mobilization, and internalization studies. Their binding to human tumor tissues was assessed with in vitro receptor autoradiography and compared with an established peptidic CCK agonist radioligand. The (125)I-labeled CCK(1) receptor-selective compound 9 often revealed a substantially higher amount of CCK(1) receptor binding sites in tumors than the agonist (125)I-CCK. Conversely, the radioiodinated CCK(2) receptor-selective compound 7 showed generally weaker tumor binding than (125)I-CCK. In conclusion, compound 9 is an excellent radioiodinated nonpeptidic antagonist ligand for direct and selective labeling of CCK(1) receptors in vitro. Moreover, it represents a suitable candidate to test antagonist binding to CCK(1) receptor-expressing tumors in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protease-activated receptors (PARs) are widely distributed in human airways. They couple to G-proteins and are activated after proteolytic cleavage of the N terminus of the receptor. Evidence is growing that PAR subtype 2 plays a pivotal role in inflammatory airway diseases, such as allergic asthma or bronchitis. However, nothing is known about the effects of PAR-2 on electrolyte transport in the native airways. PAR-2 is expressed in airway epithelial cells, where they are activated by mast cell tryptase, neutrophil proteinase 3, or trypsin. Recent studies produced conflicting results about the functional consequence of PAR-2 stimulation. Here we report that stimulation of PAR-2 receptors in mouse and human airways leads to a change in electrolyte transport and a shift from absorption to secretion. Although PAR-2 appears to be expressed on both sides of the epithelium, only basolateral stimulation results in inhibition of amiloride sensitive Na+ conductance and stimulation of both luminal Cl- channels and basolateral K+ channels. The present data indicate that these changes occur through activation of phospholipase C and increase in intracellular Ca2+, which activates basolateral SK4 K+ channels and luminal Ca2+-dependent Cl- channels. In addition, the present data suggest a PAR-2 mediated release of prostaglandin E2, which may contribute to the secretory response. In conclusion, these results provide further evidence for a role of PAR-2 in inflammatory airway disease: stimulation of these receptors may cause accumulation of airway surface liquid, which, however, may help to flush noxious stimuli away from the affected airways. ©2005 FASEB

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We assessed associations between steroid receptors including: estrogen-alpha, estrogen-beta, androgen receptor, progesterone receptor, the HER2 status and triple-negative epithelial ovarian cancer (ERα-/PR-/HER2-; TNEOC) status and survival in women with epithelial ovarian cancer. The study included 152 women with primary epithelial ovarian cancer. The status of steroid receptor and HER2 was determined by immunohistochemistry. Disease-free and overall survival were calculated and compared with steroid receptor and HER2 status as well as clinicopathological features using the Cox Proportional Hazards model. A mean follow-up period of 43.6 months (interquartile range=41.4 months) was achieved where 44% of patients had serous tumor, followed by mucinous (23%), endometrioid (9%), mixed (9%), undifferentiated (8.5%) and clear cell tumors (5.3%). ER-alpha staining was associated with grade II-III tumors. Progesterone receptor staining was positively associated with a Body Mass Index≥25. Androgen receptor positivity was higher in serous tumors. In stand-alone analysis of receptor contribution to survival, estrogen-alpha positivity was associated with greater disease-free survival. However, there was no significant association between steroid receptor expression, HER2 status, or TNEOC status, and overall survival. Although estrogen-alpha, androgen receptor, progesterone receptor and the HER2 status were associated with key clinical features of the women and pathological characteristics of the tumors, these associations were not implicated in survival. Interestingly, women with TNEOC seem to fare the same way as their counterparts with non-TNEOC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous studies from our group have demonstrated the protective effect of S-nitroso-N-acetylcysteine (SNAC) on the cardiovascular system in dyslipidemic LDLr-/- mice that develop atheroma and left ventricular hypertrophy after 15 days on a high fat diet. We have shown that SNAC treatment attenuates plaque development via the suppression of vascular oxidative stress and protects the heart from structural and functional myocardial alterations, such as heart arrhythmia, by reducing cardiomyocyte sensitivity to catecholamines. Here we investigate the ability of SNAC to modulate oxidative stress and cell survival in cardiomyocytes during remodeling and correlation with β₂-AR signaling in mediating this protection. Ventricular superoxide (O₂⁻) and hydrogen peroxide (H₂O₂) generation was measured by HPLC methods to allow quantification of dihydroethidium (DHE) products. Ventricular histological sections were stained using terminal dUTP nick-end labeling (TUNEL) to identify nuclei with DNA degradation (apoptosis) and this was confirmed by Western blot for cleaved caspase-3 and caspase-7 protein expression. The findings show that O₂⁻ and H₂O₂ production and also cell apoptosis were increased during left ventricular hypertrophy (LVH). SNAC treatment reduced oxidative stress during on cardiac remodeling, measured by decreased H₂O₂ and O₂⁻ production (65% and 52%, respectively), and a decrease in the ratio of p-Ser1177 eNOS/total eNOS. Left ventricle (LV) from SNAC-treated mice revealed a 4-fold increase in β₂-AR expression associated with coupling change to Gi; β₂-ARs-S-nitrosation (β₂-AR-SNO) increased 61%, while apoptosis decreased by 70%. These results suggest that the cardio-protective effect of SNAC treatment is primarily through its anti-oxidant role and is associated with β₂-ARs overexpression and β₂-AR-SNO via an anti-apoptotic pathway.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Angiotensin II (Ang II) and vascular endothelial growth factor (VEGF) are important mediators of kidney injury in diabetes. Acute hyperglycemia increased synthesis of intrarenal Ang I and Ang II and resulted in activation of both Ang II receptors, AT1 and AT2, in the kidney. Losartan (specific AT1 antagonist) or PD123319 (specific AT2 antagonist) did not affect hyperglycemia but prevented activation of renal AT1 and AT2, respectively. In murine renal cortex, acute hyperglycemia increased VEGF protein but not mRNA content after 24 h, which suggested translational regulation. Blockade of AT2, but not AT1, prevented increase in VEGF synthesis by inhibiting translation of VEGF mRNA in renal cortex. Acute hyperglycemia increased VEGF expression in wild type but not in AT2 knockout mice. Binding of heterogeneous nuclear ribonucleoprotein K to VEGF mRNA, which stimulates its translation, was prevented by blockade of AT2, but not AT1. The Akt-mTOR-p70(S6K) signaling pathway, involved in the activation of mRNA translation, was activated in hyperglycemic kidneys and was blocked by the AT2 antagonist. Elongation phase is an important step of mRNA translation that is controlled by elongation factor 1A (eEF1A) and 2 (eEF2). Expression of eEF1A and activity of eEF2 was higher in kidney cortex from hyperglycemic mice and only the AT2 antagonist prevented these changes. To assess selectivity of translational control of VEGF expression, we measured expression of fibronectin (FN) and laminin beta 1 (lam beta 1): acute hyperglycemia increased FN expression at both protein and mRNA levels, indicating transcriptional control, and did not affect the expression of lam beta 1. To confirm results obtained with PD123319, we induced hyperglycemia in AT2 knockout mice and found that in the absence of AT2, translational control of VEGF expression by hyperglycemia was abolished. Our data show that acute hyperglycemia stimulates Ang II synthesis in murine kidney cortex, this leads to AT2 activation and stimulation of VEGF mRNA translation, via the Akt-mTOR-p70(S6K) signaling pathway. Our data show that exclusive translational control of protein expression in the kidney by acute hyperglycemia is not a general phenomenon, but do not prove that it is restricted to VEGF. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Vascular endothelial growth factor (VEGF) is a macromolecule of importance in inflammation that has been implicated in periodontitis. The aims of this study were to investigate VEGF expression during the progression of periodontal disease and to evaluate the effect of a preferential cyclooxygenase (COX)-2 inhibitor meloxicam on VEGF expression and alveolar bone loss in experimentally induced periodontitis. Methods: A total of 120 Wistar rats were randomly separated into groups 1 (control) and 2 (meloxicam, 3 mg/kg/day, intraperitoneally, for 3, 7, 14, or 30 days). Silk ligatures were placed at the gingival margin level of the lower right first molar of all rats. VEGF expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR), Western blot (WB), and immunohistochemical (IHC) analyses. The hemiarcades were processed for histopathologic analysis. RT-PCR and WB results were submitted to analysis of variance, the Tukey test, and Pearson correlation analysis (P<0.05). Results: A reduction in alveolar bone resorption was observed in the meloxicam-treated group compared to the control group at all periods studied. There was a positive correlation between COX-2 mRNA and VEGF mRNA in the gingival tissues and periodontal disease (R = 0.80; P = 0.026). Meloxicam significantly reduced the increased mRNA VEGF expression in diseased tissues after 14 days of treatment (P = 0.023). Some alterations in VEGF receptor I mRNA expression were observed, but these were not statistically significant. VEGF protein expression in WB experiments was significantly higher in diseased sites compared to healthy sites (P<0.05). After 14 days of treatment with meloxicam, an important decrease in VEGF protein expression was detected in diseased tissues (P = 0.08). Qualitative IHC analysis revealed that VEGF protein expression was higher in diseased tissues and decreased in tissues from rats treated with meloxicam. Conclusions: The present data suggest an important role for VEGF in the progression of periodontal disease. Systemic therapy with meloxicam can modify the progression of experimentally induced periodontitis in rats by reducing VEGF expression and alveolar bone loss.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Functional high-affinity interleukin-2 receptors (IL-2R) contain three transmembrane proteins, IL-2R alpha, beta and gamma. We have investigated the expression of IL-2R alpha and beta genes in immature mouse thymocytes. Previous work has shown that during differentiation these cells transiently express IL-2R alpha on their surface. Stimulation of IL-2R alpha+ and IL-2R alpha- immature thymocytes with phorbol 12-myristate 13-acetate and calcium ionophore induces synthesis of IL-2R alpha and IL-2R beta mRNA. Most of this response depends on autocrine stimulation by IL-2. IL-1 synergizes with IL-2 to induce a 120-fold increase in IL-2R alpha mRNA and a 14-fold increase in IL-2R beta mRNA levels. A large proportion of the stimulated cells contains both transcripts. These interleukins do not induce any differentiation to more mature phenotypes. Collectively, these results show that IL-2 plays a major role in the regulation of IL-2R expression in normal immature thymocyte. We suggest that this response to interleukins may be part of a homeostatic mechanism to increase the production of immature thymocytes during stress.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In previous studies we showed that the wild-type histamine H(2) receptor stably expressed in Chinese hamster ovary cells is constitutively active. Because constitutive activity of the H(2) receptor is already found at low expression levels (300 fmol/mg protein) this receptor is a relatively unique member of the G-protein-coupled receptor (GPCR) family and a useful tool for studying GPCR activation. In this study the role of the highly conserved DRY motif in activation of the H(2) receptor was investigated. Mutation of the aspartate 115 residue in this motif resulted in H(2) receptors with high constitutive activity, increased agonist affinity, and increased signaling properties. In addition, the mutant receptors were shown to be highly structurally instable. Mutation of the arginine 116 residue in the DRY motif resulted also in a highly structurally instable receptor; expression of the receptor could only be detected after stabilization with either an agonist or inverse agonist. Moreover, the agonist affinity at the Arg-116 mutant receptors was increased, whereas the signal transduction properties of these receptors were decreased. We conclude that the Arg-116 mutant receptors can adopt an active conformation but have a decreased ability to couple to or activate the G(s)-protein. This study examines the pivotal role of the aspartate and arginine residues of the DRY motif in GPCR function. Disruption of receptor stabilizing constraints by mutation in the DRY motif leads to the formation of active GPCR conformations, but concomitantly to GPCR instability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nerve injuries often lead to neuropathic pain syndrome. The mechanisms contributing to this syndrome involve local inflammatory responses, activation of glia cells, and changes in the plasticity of neuronal nociceptive pathways. Cannabinoid CB(2) receptors contribute to the local containment of neuropathic pain by modulating glial activation in response to nerve injury. Thus, neuropathic pain spreads in mice lacking CB(2) receptors beyond the site of nerve injury. To further investigate the mechanisms leading to the enhanced manifestation of neuropathic pain, we have established expression profiles of spinal cord tissues from wild-type and CB(2)-deficient mice after nerve injury. An enhanced interferon-gamma (IFN-gamma) response was revealed in the absence of CB(2) signaling. Immunofluorescence stainings demonstrated an IFN-gamma production by astrocytes and neurons ispilateral to the nerve injury in wild-type animals. In contrast, CB(2)-deficient mice showed neuronal and astrocytic IFN-gamma immunoreactivity also in the contralateral region, thus matching the pattern of nociceptive hypersensitivity in these animals. Experiments in BV-2 microglia cells revealed that transcriptional changes induced by IFN-gamma in two key elements for neuropathic pain development, iNOS (inducible nitric oxide synthase) and CCR2, are modulated by CB(2) receptor signaling. The most direct support for a functional involvement of IFN-gamma as a mediator of CB(2) signaling was obtained with a double knock-out mouse strain deficient in CB(2) receptors and IFN-gamma. These animals no longer show the enhanced manifestations of neuropathic pain observed in CB(2) knock-outs. These data clearly demonstrate that the CB(2) receptor-mediated control of neuropathic pain is IFN-gamma dependent.