996 resultados para ARM MOVEMENTS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses could explain the compensation of these dynamic torques. One involves the use of internal models to centrally compute predicted interaction torques and their explicit compensation through anticipatory adjustment of descending motor commands. The alternative, based on the equilibrium-point hypothesis, claims that descending signals can be simple and related to the desired movement kinematics only, while spinal feedback mechanisms are responsible for the appropriate creation and coordination of dynamic muscle forces. Partial supporting evidence exists in each case. However, until now no model has explicitly shown, in the case of the second hypothesis, whether peripheral feedback is really sufficient on its own for coordinating the motion of several joints while at the same time accommodating intersegmental interaction torques. Here we propose a minimal computational model to examine this question. Using a biomechanics simulation of a two-joint arm controlled by spinal neural circuitry, we show for the first time that it is indeed possible for the neuromusculoskeletal system to transform simple descending control signals into muscle activation patterns that accommodate interaction forces depending on their direction and magnitude. This is achieved without the aid of any central predictive signal. Even though the model makes various simplifications and abstractions compared to the complexities involved in the control of human arm movements, the finding lends plausibility to the hypothesis that some multijoint movements can in principle be controlled even in the absence of internal models of intersegmental dynamics or learned compensatory motor signals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rhythmic and discrete arm movements occur ubiquitously in everyday life, and there is a debate as to whether these two classes of movements arise from the same or different underlying neural mechanisms. Here we examine interference in a motor-learning paradigm to test whether rhythmic and discrete movements employ at least partially separate neural representations. Subjects were required to make circular movements of their right hand while they were exposed to a velocity-dependent force field that perturbed the circularity of the movement path. The direction of the force-field perturbation reversed at the end of each block of 20 revolutions. When subjects made only rhythmic or only discrete circular movements, interference was observed when switching between the two opposing force fields. However, when subjects alternated between blocks of rhythmic and discrete movements, such that each was uniquely associated with one of the perturbation directions, interference was significantly reduced. Only in this case did subjects learn to corepresent the two opposing perturbations, suggesting that different neural resources were employed for the two movement types. Our results provide further evidence that rhythmic and discrete movements employ at least partially separate control mechanisms in the motor system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Humans use their arms to engage in a wide variety of motor tasks during everyday life. However, little is known about the statistics of these natural arm movements. Studies of the sensory system have shown that the statistics of sensory inputs are key to determining sensory processing. We hypothesized that the statistics of natural everyday movements may, in a similar way, influence motor performance as measured in laboratory-based tasks. We developed a portable motion-tracking system that could be worn by subjects as they went about their daily routine outside of a laboratory setting. We found that the well-documented symmetry bias is reflected in the relative incidence of movements made during everyday tasks. Specifically, symmetric and antisymmetric movements are predominant at low frequencies, whereas only symmetric movements are predominant at high frequencies. Moreover, the statistics of natural movements, that is, their relative incidence, correlated with subjects' performance on a laboratory-based phase-tracking task. These results provide a link between natural movement statistics and motor performance and confirm that the symmetry bias documented in laboratory studies is a natural feature of human movement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

How the CNS deals with the issue of motor redundancy remains a central question for motor control research. Here we investigate the means by which neuromuscular and biomechanical factors interact to resolve motor redundancy in rhythmic multijoint arm movements. We used a two-df motorised robot arm to manipulate the dynamics of rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow-joint complex. Participants were required to produce rhythmic FE and SP movements, either in isolation, or in combination (at the phase relationship of their choice), while we recorded the activity of key bi-functional muscles. When performed in combination, most participants spontaneously produced an in-phase pattern of coordination in which flexion is synchronised with supination. The activity of the Biceps Brachii (BB), the strongest arm muscle which also has the largest moment arms in both flexion and supination was significantly higher for FE and SP performed in combination than in isolation, suggesting optimal exploitation of the mechanical advantage of this muscle. In a separate condition, participants were required to produce a rhythmic SP movement while a rhythmic FE movement was imposed by the motorised robot. Simulations based upon a musculoskeletal model of the arm demonstrated that in this context, the most efficient use of the force-velocity relationship of BB requires that an anti-phase pattern of coordination (flexion synchronized with pronation) be produced. In practice, the participants maintained the in-phase behavior, and BB activity was higher than for SP performed in isolation. This finding suggests that the neural organisation underlying the exploitation of bifunctional muscle properties, in the natural context, constrains the system to maintain the

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objects with which the hand interacts with may significantly change the dynamics of the arm. How does the brain adapt control of arm movements to this new dynamic? We show that adaptation is via composition of a model of the task's dynamics. By exploring generalization capabilities of this adaptation we infer some of the properties of the computational elements with which the brain formed this model: the elements have broad receptive fields and encode the learned dynamics as a map structured in an intrinsic coordinate system closely related to the geometry of the skeletomusculature. The low--level nature of these elements suggests that they may represent asset of primitives with which a movement is represented in the CNS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to determine the role of head, eye and arm movements during the execution of a table tennis forehand stroke. Three-dimensional kinematic analysis of line-of-gaze, arm and ball was used to describe visual and motor behaviour. Skilled and less skilled participants returned the ball to cued right or left target areas under three levels of temporal constraint: pre-, early- and late-cue conditions. In the pre- and early-cue conditions, both high and low skill participants tracked the ball early in flight and kept gaze stable on a location in advance of the ball before ball-bat contact. Skilled participants demonstrated an earlier onset of ball tracking and recorded higher performance accuracy than less skilled counterparts. The manipulation of cue condition showed the limits of adaptation to maintain accuracy on the target. Participants were able to accommodate the constraints imposed by the early-cue condition by using a shorter quiet eye duration, earlier quiet eye offset and reduced arm velocity at contact. In the late-cue condition, modifications to gaze, head and arm movements were not sufficient to preserve accuracy. The findings highlight the functional coupling between perception and action during time-constrained, goal-directed actions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The trapezius (pars superior) and levator scapulae mm were studied in the arm movements of circumduction and pendular oscillation in 30 adult volunteers of both sexes. A two-channel TECA TE 4 electromyograph and single coaxial needle electrodes were used. It was found out that as arm conduction, both muscles show an activity that gradually increases and decreases the intensity at the elevation and lowering phases respectively. It was also noticed that between two consecutive circumductions a 'silent period' in the activity of the above mentioned muscles occurs. In pendular oscillation these muscles show electrical activity both in the forward and backward moving, and both muscles show a 'silent period' when the arm passes by the trunk. It was not observed in these movements any significant difference in activity of these muscles regarding sex.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have developed a haptic-based approach for retraining of interjoint coordination following stroke called time-independent functional training (TIFT) and implemented this mode in the ARMin III robotic exoskeleton. The ARMin III robot was developed by Drs. Robert Riener and Tobias Nef at the Swiss Federal Institute of Technology Zurich (Eidgenossische Technische Hochschule Zurich, or ETH Zurich), in Zurich, Switzerland. In the TIFT mode, the robot maintains arm movements within the proper kinematic trajectory via haptic walls at each joint. These arm movements focus training of interjoint coordination with highly intuitive real-time feedback of performance; arm movements advance within the trajectory only if their movement coordination is correct. In initial testing, 37 nondisabled subjects received a single session of learning of a complex pattern. Subjects were randomized to TIFT or visual demonstration or moved along with the robot as it moved though the pattern (time-dependent [TD] training). We examined visual demonstration to separate the effects of action observation on motor learning from the effects of the two haptic guidance methods. During these training trials, TIFT subjects reduced error and interaction forces between the robot and arm, while TD subject performance did not change. All groups showed significant learning of the trajectory during unassisted recall trials, but we observed no difference in learning between groups, possibly because this learning task is dominated by vision. Further testing in stroke populations is warranted.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Long-term, off-site human monitoring systems are emerging with respect to the skyrocketing expenditures engaged with rehabilitation therapies for neurological diseases. Inertial/magnetic sensor modules are well known as a worthy solution for this problem. Much attention and effort are being paid for minimizing drift problem of angular rates, yet the rest of kinematic measurements (earth’s magnetic field and gravitational orientation) are only themselves capable enough to track movements applying the theory for solving historicalWahbas Problem. Further, these solutions give a closed form solution which makes it mostly suitable for real time Mo-Cap systems. This paper examines the feasibility of some typical solutions of Wahba’s Problem named TRIAD method, Davenport’s q method, Singular Value Decomposition method and QUEST algorithm upon current inertial/magnetic sensor measurements for tracking human arm movements. Further, the theoretical assertions are compared through controlled experiments with both simulated and actual accelerometer and magnetometer measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous work has shown that amplitude and direction are two independently controlled parameters of aimed arm movements, and performance, therefore, suffers when they must be decomposed into Cartesian coordinates. We now compare decomposition into different coordinate systems. Subjects pointed at visual targets in 2-D with a cursor, using a two-axis joystick or two single-axis joysticks. In the latter case, joystick axes were aligned with the subjects’ body axes, were rotated by –45°, or were oblique (i.e., one axis was in an egocentric frame and the other was rotated by –45°). Cursor direction always corresponded to joystick direction. We found that compared with the two-axis joystick, responses with single-axis joysticks were slower and less accurate when the axes were oriented egocentrically; the deficit was even more pronounced when the axes were rotated and was most pronounced when they were oblique. This confirms that decomposition of motor commands is computationally demanding and documents that this demand is lowest for egocentric, higher for rotated, and highest for oblique coordinates. We conclude that most current vehicles use computationally demanding man–machine interfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Robotic manipulanda are extensively used in investigation of the motor control of human arm movements. They permit the application of translational forces to the arm based on its state and can be used to probe issues ranging from mechanisms of neural control to biomechanics. However, most current designs are optimized for studying either motor learning or stiffness. Even fewer include end-point torque control which is important for the simulation of objects and the study of tool use. Here we describe a modular, general purpose, two-dimensional planar manipulandum (vBOT) primarily optimized for dynamic learning paradigms. It employs a carbon fibre arm arranged as a parallelogram which is driven by motors via timing pulleys. The design minimizes the intrinsic dynamics of the manipulandum without active compensation. A novel variant of the design (WristBOT) can apply torques at the handle using an add-on cable drive mechanism. In a second variant (StiffBOT) a more rigid arm can be substituted and zero backlash belts can be used, making the StiffBOT more suitable for the study of stiffness. The three variants can be used with custom built display rigs, mounting, and air tables. We investigated the performance of the vBOT and its variants in terms of effective end-point mass, viscosity and stiffness. Finally we present an object manipulation task using the WristBOT. This demonstrates that subjects can perceive the orientation of the principal axis of an object based on haptic feedback arising from its rotational dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, we demonstrated that humans can learn to make accurate movements in an unstable environment by controlling magnitude, shape, and orientation of the endpoint impedance. Although previous studies of human motor learning suggest that the brain acquires an inverse dynamics model of the novel environment, it is not known whether this control mechanism is operative in unstable environments. We compared learning of multijoint arm movements in a "velocity-dependent force field" (VF), which interacted with the arm in a stable manner, and learning in a "divergent force field" (DF), where the interaction was unstable. The characteristics of error evolution were markedly different in the 2 fields. The direction of trajectory error in the DF alternated to the left and right during the early stage of learning; that is, signed error was inconsistent from movement to movement and could not have guided learning of an inverse dynamics model. This contrasted sharply with trajectory error in the VF, which was initially biased and decayed in a manner that was consistent with rapid feedback error learning. EMG recorded before and after learning in the DF and VF are also consistent with different learning and control mechanisms for adapting to stable and unstable dynamics, that is, inverse dynamics model formation and impedance control. We also investigated adaptation to a rotated DF to examine the interplay between inverse dynamics model formation and impedance control. Our results suggest that an inverse dynamics model can function in parallel with an impedance controller to compensate for consistent perturbing force in unstable environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As humanoid robots become more commonplace in our society, it is important to understand the relation between humans and humanoid robots. In human face-to-face interaction, the observation of another individual performing an action facilitates the execution of a similar action, and interferes with the execution of different action. This phenomenon has been explained by the existence of shared internal representations for the execution and perception of actions, which would be automatically activated by the perception of another individual's action. In one interference experiment, null interference was reported when subjects observed a robotic arm perform the incongruent task, suggesting that this effect may be specific to interacting with other humans. This experimental paradigm, designed to investigate motor interference in human interactions, was adapted to investigate how similar the implicit perception of a humanoid robot is to a human agent. Subjects performed rhythmic arm movements while observing either a human agent or humanoid robot performing either congruent or incongruent movements. The variance of the executed movements was used as a measure of the amount of interference in the movements. Both the human and humanoid agents produced significant interference effect. These results suggest that observing the action of humanoid robot and human agent may rely on similar perceptual processes. Furthermore, the ratio of the variance in incongruent to congruent conditions varied between the human agent and humanoid robot. We speculate this ratio describes how the implicit perception of a robot is similar to that of a human, so that this paradigm could provide an objective measure of the reaction to different types of robots and be used to guide the design of humanoid robots interacting with humans. © 2004 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A neural model is described of how the brain may autonomously learn a body-centered representation of 3-D target position by combining information about retinal target position, eye position, and head position in real time. Such a body-centered spatial representation enables accurate movement commands to the limbs to be generated despite changes in the spatial relationships between the eyes, head, body, and limbs through time. The model learns a vector representation--otherwise known as a parcellated distributed representation--of target vergence with respect to the two eyes, and of the horizontal and vertical spherical angles of the target with respect to a cyclopean egocenter. Such a vergence-spherical representation has been reported in the caudal midbrain and medulla of the frog, as well as in psychophysical movement studies in humans. A head-centered vergence-spherical representation of foveated target position can be generated by two stages of opponent processing that combine corollary discharges of outflow movement signals to the two eyes. Sums and differences of opponent signals define angular and vergence coordinates, respectively. The head-centered representation interacts with a binocular visual representation of non-foveated target position to learn a visuomotor representation of both foveated and non-foveated target position that is capable of commanding yoked eye movementes. This head-centered vector representation also interacts with representations of neck movement commands to learn a body-centered estimate of target position that is capable of commanding coordinated arm movements. Learning occurs during head movements made while gaze remains fixed on a foveated target. An initial estimate is stored and a VOR-mediated gating signal prevents the stored estimate from being reset during a gaze-maintaining head movement. As the head moves, new estimates arc compared with the stored estimate to compute difference vectors which act as error signals that drive the learning process, as well as control the on-line merging of multimodal information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.